mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Add wanx pipeline, model and example * wanx_merged_v1 * change WanX into Wan * fix i2v fp32 oom error Link: https://code.alibaba-inc.com/open_wanx2/diffusers/codereview/20607813 * support t2v load fp32 ckpt * add example * final merge v1 * Update autoencoder_kl_wan.py * up * update middle, test up_block * up up * one less nn.sequential * up more * up * more * [refactor] [wip] Wan transformer/pipeline (#10926) * update * update * refactor rope * refactor pipeline * make fix-copies * add transformer test * update * update * make style * update tests * tests * conversion script * conversion script * update * docs * remove unused code * fix _toctree.yml * update dtype * fix test * fix tests: scale * up * more * Apply suggestions from code review * Apply suggestions from code review * style * Update scripts/convert_wan_to_diffusers.py * update docs * fix --------- Co-authored-by: Yitong Huang <huangyitong.hyt@alibaba-inc.com> Co-authored-by: 亚森 <wangjiayu.wjy@alibaba-inc.com> Co-authored-by: Aryan <aryan@huggingface.co>
80 lines
2.3 KiB
Python
80 lines
2.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from diffusers import AutoencoderKLWan
|
|
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device
|
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderKLWan
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_kl_wan_config(self):
|
|
return {
|
|
"base_dim": 3,
|
|
"z_dim": 16,
|
|
"dim_mult": [1, 1, 1, 1],
|
|
"num_res_blocks": 1,
|
|
"temperal_downsample": [False, True, True],
|
|
}
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_frames = 9
|
|
num_channels = 3
|
|
sizes = (16, 16)
|
|
|
|
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 9, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 9, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_kl_wan_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skip("Gradient checkpointing has not been implemented yet")
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
pass
|
|
|
|
@unittest.skip("Test not supported")
|
|
def test_forward_with_norm_groups(self):
|
|
pass
|
|
|
|
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
|
|
def test_layerwise_casting_inference(self):
|
|
pass
|
|
|
|
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
|
|
def test_layerwise_casting_training(self):
|
|
pass
|