1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs/source/zh/hybrid_inference/vae_encode.md
2025-08-20 08:49:19 -07:00

184 lines
10 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 入门:使用混合推理进行 VAE 编码
VAE 编码用于训练、图像到图像和图像到视频——将图像或视频转换为潜在表示。
## 内存
这些表格展示了在不同 GPU 上使用 SD v1 和 SD XL 进行 VAE 编码的 VRAM 需求。
对于这些 GPU 中的大多数内存使用百分比决定了其他模型文本编码器、UNet/Transformer必须被卸载或者必须使用分块编码这会增加时间并影响质量。
<details><summary>SD v1.5</summary>
| GPU | 分辨率 | 时间(秒) | 内存(% | 分块时间(秒) | 分块内存(% |
|:------------------------------|:-------------|-----------------:|-------------:|--------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.015 | 3.51901 | 0.015 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.004 | 1.3154 | 0.005 | 1.3154 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.402 | 47.1852 | 0.496 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.078 | 12.2658 | 0.094 | 3.51901 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.023 | 5.30105 | 0.023 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.006 | 1.98152 | 0.006 | 1.98152 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 0.574 | 71.08 | 0.656 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.111 | 18.4772 | 0.14 | 5.30105 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.032 | 3.52782 | 0.032 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.01 | 1.31869 | 0.009 | 1.31869 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 0.742 | 47.3033 | 0.954 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.136 | 12.2965 | 0.207 | 3.52782 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.036 | 8.51761 | 0.036 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.01 | 3.18387 | 0.01 | 3.18387 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | 0.863 | 86.7424 | 1.191 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.157 | 29.6888 | 0.227 | 8.51761 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.051 | 10.6941 | 0.051 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.015 |
| 3.99743 | 0.015 | 3.99743 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | 1.217 | 96.054 | 1.482 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.223 | 37.2751 | 0.327 | 10.6941 |
</details>
<details><summary>SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|----------------------:|-----------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.029 | 4.95707 | 0.029 | 4.95707 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.007 | 2.29666 | 0.007 | 2.29666 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.873 | 66.3452 | 0.863 | 15.5649 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.142 | 15.5479 | 0.143 | 15.5479 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.044 | 7.46735 | 0.044 | 7.46735 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.01 | 3.4597 | 0.01 | 3.4597 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 1.317 | 87.1615 | 1.291 | 23.447 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.213 | 23.4215 | 0.214 | 23.4215 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.058 | 5.65638 | 0.058 | 5.65638 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.016 | 2.45081 | 0.016 | 2.45081 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 1.755 | 77.8239 | 1.614 | 18.4193 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.265 | 18.4023 | 0.265 | 18.4023 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.064 | 13.6568 | 0.064 | 13.6568 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.018 | 5.91728 | 0.018 | 5.91728 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | 内存不足 (OOM) | 内存不足 (OOM) | 1.866 | 44.4717 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.302 | 44.4308 | 0.302 | 44.4308 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.093 | 17.1465 | 0.093 | 17.1465 |
| NVIDIA GeForce R
| NVIDIA GeForce RTX 3070 | 256x256 | 0.025 | 7.42931 | 0.026 | 7.42931 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | OOM | OOM | 2.674 | 55.8355 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.443 | 55.7841 | 0.443 | 55.7841 |
</details>
## 可用 VAE
| | **端点** | **模型** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud](https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud](https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud](https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
> [!TIP]
> 模型支持可以在此处请求:[这里](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml)。
## 代码
> [!TIP]
> 从 `main` 安装 `diffusers` 以运行代码:`pip install git+https://github.com/huggingface/diffusers@main`
一个辅助方法简化了与混合推理的交互。
```python
from diffusers.utils.remote_utils import remote_encode
```
### 基本示例
让我们编码一张图像,然后解码以演示。
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"/>
</figure>
<details><summary>代码</summary>
```python
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg?download=true")
latent = remote_encode(
endpoint="https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/",
scaling_factor=0.3611,
shift_factor=0.1159,
)
decoded = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.3611,
shift_factor=0.1159,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/decoded.png"/>
</figure>
### 生成
现在让我们看一个生成示例,我们将编码图像,生成,然后远程解码!
<details><summary>代码</summary>
```python
import torch
from diffusers import StableDiffusionImg2ImgPip
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode, remote_encode
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
init_image = load_image(
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
init_latent = remote_encode(
endpoint="https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/",
image=init_image,
scaling_factor=0.18215,
)
prompt = "A fantasy landscape, trending on artstation"
latent = pipe(
prompt=prompt,
image=init_latent,
strength=0.75,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("fantasy_landscape.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/fantasy_landscape.png"/>
</figure>
## 集成
* **[SD.Next](https://github.com/vladmandic/sdnext):** 具有直接支持混合推理功能的一体化用户界面。
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** 用于混合推理的 ComfyUI 节点。