mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
107 lines
3.8 KiB
Python
107 lines
3.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from diffusers import QwenImageTransformer2DModel
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = QwenImageTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
# We override the items here because the transformer under consideration is small.
|
|
model_split_percents = [0.7, 0.6, 0.6]
|
|
|
|
# Skip setting testing with default: AttnProcessor
|
|
uses_custom_attn_processor = True
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
return self.prepare_dummy_input()
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (16, 16)
|
|
|
|
def prepare_dummy_input(self, height=4, width=4):
|
|
batch_size = 1
|
|
num_latent_channels = embedding_dim = 16
|
|
sequence_length = 7
|
|
vae_scale_factor = 4
|
|
|
|
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
encoder_hidden_states_mask = torch.ones((batch_size, sequence_length)).to(torch_device, torch.long)
|
|
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
|
orig_height = height * 2 * vae_scale_factor
|
|
orig_width = width * 2 * vae_scale_factor
|
|
img_shapes = [(1, orig_height // vae_scale_factor // 2, orig_width // vae_scale_factor // 2)] * batch_size
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"encoder_hidden_states_mask": encoder_hidden_states_mask,
|
|
"timestep": timestep,
|
|
"img_shapes": img_shapes,
|
|
"txt_seq_lens": encoder_hidden_states_mask.sum(dim=1).tolist(),
|
|
}
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"patch_size": 2,
|
|
"in_channels": 16,
|
|
"out_channels": 4,
|
|
"num_layers": 2,
|
|
"attention_head_dim": 16,
|
|
"num_attention_heads": 3,
|
|
"joint_attention_dim": 16,
|
|
"guidance_embeds": False,
|
|
"axes_dims_rope": (8, 4, 4),
|
|
}
|
|
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"QwenImageTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
|
|
class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
|
model_class = QwenImageTransformer2DModel
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
return QwenImageTransformerTests().prepare_init_args_and_inputs_for_common()
|
|
|
|
def prepare_dummy_input(self, height, width):
|
|
return QwenImageTransformerTests().prepare_dummy_input(height=height, width=width)
|
|
|
|
@pytest.mark.xfail(condition=True, reason="RoPE needs to be revisited.", strict=True)
|
|
def test_torch_compile_recompilation_and_graph_break(self):
|
|
super().test_torch_compile_recompilation_and_graph_break()
|