# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pytest import torch from diffusers import QwenImageTransformer2DModel from ...testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin enable_full_determinism() class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = QwenImageTransformer2DModel main_input_name = "hidden_states" # We override the items here because the transformer under consideration is small. model_split_percents = [0.7, 0.6, 0.6] # Skip setting testing with default: AttnProcessor uses_custom_attn_processor = True @property def dummy_input(self): return self.prepare_dummy_input() @property def input_shape(self): return (16, 16) @property def output_shape(self): return (16, 16) def prepare_dummy_input(self, height=4, width=4): batch_size = 1 num_latent_channels = embedding_dim = 16 sequence_length = 7 vae_scale_factor = 4 hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) encoder_hidden_states_mask = torch.ones((batch_size, sequence_length)).to(torch_device, torch.long) timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size) orig_height = height * 2 * vae_scale_factor orig_width = width * 2 * vae_scale_factor img_shapes = [(1, orig_height // vae_scale_factor // 2, orig_width // vae_scale_factor // 2)] * batch_size return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "encoder_hidden_states_mask": encoder_hidden_states_mask, "timestep": timestep, "img_shapes": img_shapes, "txt_seq_lens": encoder_hidden_states_mask.sum(dim=1).tolist(), } def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "in_channels": 16, "out_channels": 4, "num_layers": 2, "attention_head_dim": 16, "num_attention_heads": 3, "joint_attention_dim": 16, "guidance_embeds": False, "axes_dims_rope": (8, 4, 4), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"QwenImageTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase): model_class = QwenImageTransformer2DModel def prepare_init_args_and_inputs_for_common(self): return QwenImageTransformerTests().prepare_init_args_and_inputs_for_common() def prepare_dummy_input(self, height, width): return QwenImageTransformerTests().prepare_dummy_input(height=height, width=width) @pytest.mark.xfail(condition=True, reason="RoPE needs to be revisited.", strict=True) def test_torch_compile_recompilation_and_graph_break(self): super().test_torch_compile_recompilation_and_graph_break()