1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
Yuqian Hong 4fa24591a3 create a script to train autoencoderkl (#10605)
* create a script to train vae

* update main.py

* update train_autoencoderkl.py

* update train_autoencoderkl.py

* add a check of --pretrained_model_name_or_path and --model_config_name_or_path

* remove the comment, remove diffusers in requiremnets.txt, add validation_image ote

* update autoencoderkl.py

* quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-27 16:41:34 +05:30

60 lines
1.7 KiB
Markdown

# AutoencoderKL training example
## Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
## Training on CIFAR10
Please replace the validation image with your own image.
```bash
accelerate launch train_autoencoderkl.py \
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
--dataset_name=cifar10 \
--image_column=img \
--validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \
--num_train_epochs 100 \
--gradient_accumulation_steps 2 \
--learning_rate 4.5e-6 \
--lr_scheduler cosine \
--report_to wandb \
```
## Training on ImageNet
```bash
accelerate launch train_autoencoderkl.py \
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
--num_train_epochs 100 \
--gradient_accumulation_steps 2 \
--learning_rate 4.5e-6 \
--lr_scheduler cosine \
--report_to wandb \
--mixed_precision bf16 \
--train_data_dir /path/to/ImageNet/train \
--validation_image ./image.png \
--decoder_only
```