mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* StableDiffusion: Decode latents separately to run larger batches * Move VAE sliced decode under enable_vae_sliced_decode and vae.enable_sliced_decode * Rename sliced_decode to slicing * fix whitespace * fix quality check and repository consistency * VAE slicing tests and documentation * API doc hooks for VAE slicing * reformat vae slicing tests * Skip VAE slicing for one-image batches * Documentation tweaks for VAE slicing Co-authored-by: Ilmari Heikkinen <ilmari@fhtr.org>
1101 lines
41 KiB
Python
1101 lines
41 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import time
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
UNet2DModel,
|
|
VQModel,
|
|
logging,
|
|
)
|
|
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
|
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_uncond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_cond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_cond_unet_inpaint(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vq_model(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=3,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vae(self):
|
|
torch.manual_seed(0)
|
|
model = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModel(config)
|
|
|
|
@property
|
|
def dummy_extractor(self):
|
|
def extract(*args, **kwargs):
|
|
class Out:
|
|
def __init__(self):
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
def to(self, device):
|
|
self.pixel_values.to(device)
|
|
return self
|
|
|
|
return Out()
|
|
|
|
return extract
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.5643956661224365,
|
|
0.6017904281616211,
|
|
0.4799129366874695,
|
|
0.5267305374145508,
|
|
0.5584856271743774,
|
|
0.46413588523864746,
|
|
0.5159522294998169,
|
|
0.4963662028312683,
|
|
0.47919973731040955,
|
|
]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_ddim_factor_8(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
height=136,
|
|
width=136,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 136, 136, 3)
|
|
expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.5094760060310364,
|
|
0.5674174427986145,
|
|
0.46675148606300354,
|
|
0.5125715136528015,
|
|
0.5696930289268494,
|
|
0.4674668312072754,
|
|
0.5277683734893799,
|
|
0.4964486062526703,
|
|
0.494540274143219,
|
|
]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_no_safety_checker(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
|
|
)
|
|
assert isinstance(pipe, StableDiffusionPipeline)
|
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
|
|
assert pipe.safety_checker is None
|
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
# check that there's no error when saving a pipeline with one of the models being None
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
|
|
|
|
# sanity check that the pipeline still works
|
|
assert pipe.safety_checker is None
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
def test_stable_diffusion_k_lms(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.47082293033599854,
|
|
0.5371589064598083,
|
|
0.4562119245529175,
|
|
0.5220914483070374,
|
|
0.5733777284622192,
|
|
0.4795039892196655,
|
|
0.5465868711471558,
|
|
0.5074326395988464,
|
|
0.5042197108268738,
|
|
]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_k_euler_ancestral(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.4707113206386566,
|
|
0.5372191071510315,
|
|
0.4563021957874298,
|
|
0.5220003724098206,
|
|
0.5734264850616455,
|
|
0.4794946610927582,
|
|
0.5463782548904419,
|
|
0.5074145197868347,
|
|
0.504422664642334,
|
|
]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_k_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = EulerDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.47082313895225525,
|
|
0.5371587872505188,
|
|
0.4562119245529175,
|
|
0.5220913887023926,
|
|
0.5733776688575745,
|
|
0.47950395941734314,
|
|
0.546586811542511,
|
|
0.5074326992034912,
|
|
0.5042197108268738,
|
|
]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_attention_chunk(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
# make sure chunking the attention yields the same result
|
|
sd_pipe.enable_attention_slicing(slice_size=1)
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4
|
|
|
|
def test_stable_diffusion_vae_slicing(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
image_count = 4
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_1 = sd_pipe(
|
|
[prompt] * image_count, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np"
|
|
)
|
|
|
|
# make sure sliced vae decode yields the same result
|
|
sd_pipe.enable_vae_slicing()
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_2 = sd_pipe(
|
|
[prompt] * image_count, generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np"
|
|
)
|
|
|
|
# there is a small discrepancy at image borders vs. full batch decode
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3
|
|
|
|
def test_stable_diffusion_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
negative_prompt = "french fries"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe(
|
|
prompt,
|
|
negative_prompt=negative_prompt,
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[
|
|
0.5108221173286438,
|
|
0.5688379406929016,
|
|
0.4685141146183014,
|
|
0.5098261833190918,
|
|
0.5657756328582764,
|
|
0.4631010890007019,
|
|
0.5226285457611084,
|
|
0.49129390716552734,
|
|
0.4899061322212219,
|
|
]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_num_images_per_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
# test num_images_per_prompt=1 (default)
|
|
images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images
|
|
|
|
assert images.shape == (1, 64, 64, 3)
|
|
|
|
# test num_images_per_prompt=1 (default) for batch of prompts
|
|
batch_size = 2
|
|
images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images
|
|
|
|
assert images.shape == (batch_size, 64, 64, 3)
|
|
|
|
# test num_images_per_prompt for single prompt
|
|
num_images_per_prompt = 2
|
|
images = sd_pipe(
|
|
prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
|
|
).images
|
|
|
|
assert images.shape == (num_images_per_prompt, 64, 64, 3)
|
|
|
|
# test num_images_per_prompt for batch of prompts
|
|
batch_size = 2
|
|
images = sd_pipe(
|
|
[prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
|
|
).images
|
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 64, 64, 3)
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
def test_stable_diffusion_fp16(self):
|
|
"""Test that stable diffusion works with fp16"""
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# put models in fp16
|
|
unet = unet.half()
|
|
vae = vae.half()
|
|
bert = bert.half()
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
def test_stable_diffusion_long_prompt(self):
|
|
unet = self.dummy_cond_unet
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
do_classifier_free_guidance = True
|
|
negative_prompt = None
|
|
num_images_per_prompt = 1
|
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
|
|
|
|
prompt = 25 * "@"
|
|
with CaptureLogger(logger) as cap_logger_3:
|
|
text_embeddings_3 = sd_pipe._encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
|
|
prompt = 100 * "@"
|
|
with CaptureLogger(logger) as cap_logger:
|
|
text_embeddings = sd_pipe._encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
|
|
negative_prompt = "Hello"
|
|
with CaptureLogger(logger) as cap_logger_2:
|
|
text_embeddings_2 = sd_pipe._encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
|
|
assert text_embeddings.shape[1] == 77
|
|
|
|
assert cap_logger.out == cap_logger_2.out
|
|
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
|
|
assert cap_logger.out.count("@") == 25
|
|
assert cap_logger_3.out == ""
|
|
|
|
def test_stable_diffusion_height_width_opt(self):
|
|
unet = self.dummy_cond_unet
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "hey"
|
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (64, 64)
|
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (96, 96)
|
|
|
|
config = dict(sd_pipe.unet.config)
|
|
config["sample_size"] = 96
|
|
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (192, 192)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_stable_diffusion(self):
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast("cuda"):
|
|
output = sd_pipe(
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
|
|
)
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_fast_ddim(self):
|
|
scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-1", subfolder="scheduler")
|
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", scheduler=scheduler)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
with torch.autocast("cuda"):
|
|
output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_lms_stable_diffusion_pipeline(self):
|
|
model_id = "CompVis/stable-diffusion-v1-1"
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
scheduler = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
|
pipe.scheduler = scheduler
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
image = pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_memory_chunking(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
# make attention efficient
|
|
pipe.enable_attention_slicing()
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
output_chunked = pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image_chunked = output_chunked.images
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
# make sure that less than 3.75 GB is allocated
|
|
assert mem_bytes < 3.75 * 10**9
|
|
|
|
# disable chunking
|
|
pipe.disable_attention_slicing()
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
output = pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image = output.images
|
|
|
|
# make sure that more than 3.75 GB is allocated
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
assert mem_bytes > 3.75 * 10**9
|
|
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3
|
|
|
|
def test_stable_diffusion_vae_slicing(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
# enable vae slicing
|
|
pipe.enable_vae_slicing()
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
output_chunked = pipe(
|
|
[prompt] * 4, generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image_chunked = output_chunked.images
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
# make sure that less than 4 GB is allocated
|
|
assert mem_bytes < 4e9
|
|
|
|
# disable vae slicing
|
|
pipe.disable_vae_slicing()
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
output = pipe(
|
|
[prompt] * 4, generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image = output.images
|
|
|
|
# make sure that more than 4 GB is allocated
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
assert mem_bytes > 4e9
|
|
# There is a small discrepancy at the image borders vs. a fully batched version.
|
|
assert np.abs(image_chunked.flatten() - image.flatten()).max() < 3e-3
|
|
|
|
def test_stable_diffusion_text2img_pipeline_fp16(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
output_chunked = pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image_chunked = output_chunked.images
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
output = pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
|
|
)
|
|
image = output.images
|
|
|
|
# Make sure results are close enough
|
|
diff = np.abs(image_chunked.flatten() - image.flatten())
|
|
# They ARE different since ops are not run always at the same precision
|
|
# however, they should be extremely close.
|
|
assert diff.mean() < 2e-2
|
|
|
|
def test_stable_diffusion_text2img_pipeline_default(self):
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text2img/astronaut_riding_a_horse.npy"
|
|
)
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "astronaut riding a horse"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
assert np.abs(expected_image - image).max() < 5e-3
|
|
|
|
def test_stable_diffusion_text2img_intermediate_state(self):
|
|
number_of_steps = 0
|
|
|
|
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
test_callback_fn.has_been_called = True
|
|
nonlocal number_of_steps
|
|
number_of_steps += 1
|
|
if step == 0:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506]
|
|
)
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
|
|
elif step == 50:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[1.1078, 1.5803, 0.2773, -0.0589, -1.7928, -0.3665, -0.4695, -1.0727, -1.1601]
|
|
)
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
test_callback_fn.has_been_called = False
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
|
|
)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "Andromeda galaxy in a bottle"
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
with torch.autocast(torch_device):
|
|
pipe(
|
|
prompt=prompt,
|
|
num_inference_steps=50,
|
|
guidance_scale=7.5,
|
|
generator=generator,
|
|
callback=test_callback_fn,
|
|
callback_steps=1,
|
|
)
|
|
assert test_callback_fn.has_been_called
|
|
assert number_of_steps == 50
|
|
|
|
def test_stable_diffusion_low_cpu_mem_usage(self):
|
|
pipeline_id = "CompVis/stable-diffusion-v1-4"
|
|
|
|
start_time = time.time()
|
|
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(
|
|
pipeline_id, revision="fp16", torch_dtype=torch.float16
|
|
)
|
|
pipeline_low_cpu_mem_usage.to(torch_device)
|
|
low_cpu_mem_usage_time = time.time() - start_time
|
|
|
|
start_time = time.time()
|
|
_ = StableDiffusionPipeline.from_pretrained(
|
|
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, low_cpu_mem_usage=False
|
|
)
|
|
normal_load_time = time.time() - start_time
|
|
|
|
assert 2 * low_cpu_mem_usage_time < normal_load_time
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
pipeline_id = "CompVis/stable-diffusion-v1-4"
|
|
prompt = "Andromeda galaxy in a bottle"
|
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
|
|
pipeline = pipeline.to(torch_device)
|
|
pipeline.enable_attention_slicing(1)
|
|
pipeline.enable_sequential_cpu_offload()
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 2.8 GB is allocated
|
|
assert mem_bytes < 2.8 * 10**9
|