mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Fix typos * Fix `pipe.enable_model_cpu_offload()` usage * Fix cpu offloading * Update numbers
183 lines
6.5 KiB
Markdown
183 lines
6.5 KiB
Markdown
# T-GATE
|
|
|
|
[T-GATE](https://github.com/HaozheLiu-ST/T-GATE/tree/main) accelerates inference for [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [PixArt](../api/pipelines/pixart), and [Latency Consistency Model](../api/pipelines/latent_consistency_models.md) pipelines by skipping the cross-attention calculation once it converges. This method doesn't require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like [DeepCache](./deepcache).
|
|
|
|
Before you begin, make sure you install T-GATE.
|
|
|
|
```bash
|
|
pip install tgate
|
|
pip install -U torch diffusers transformers accelerate DeepCache
|
|
```
|
|
|
|
|
|
To use T-GATE with a pipeline, you need to use its corresponding loader.
|
|
|
|
| Pipeline | T-GATE Loader |
|
|
|---|---|
|
|
| PixArt | TgatePixArtLoader |
|
|
| Stable Diffusion XL | TgateSDXLLoader |
|
|
| Stable Diffusion XL + DeepCache | TgateSDXLDeepCacheLoader |
|
|
| Stable Diffusion | TgateSDLoader |
|
|
| Stable Diffusion + DeepCache | TgateSDDeepCacheLoader |
|
|
|
|
Next, create a `TgateLoader` with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the `tgate` method on the pipeline with a prompt, gate step, and the number of inference steps.
|
|
|
|
Let's see how to enable this for several different pipelines.
|
|
|
|
<hfoptions id="pipelines">
|
|
<hfoption id="PixArt">
|
|
|
|
Accelerate `PixArtAlphaPipeline` with T-GATE:
|
|
|
|
```py
|
|
import torch
|
|
from diffusers import PixArtAlphaPipeline
|
|
from tgate import TgatePixArtLoader
|
|
|
|
pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
|
|
|
|
gate_step = 8
|
|
inference_step = 25
|
|
pipe = TgatePixArtLoader(
|
|
pipe,
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step,
|
|
).to("cuda")
|
|
|
|
image = pipe.tgate(
|
|
"An alpaca made of colorful building blocks, cyberpunk.",
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step,
|
|
).images[0]
|
|
```
|
|
</hfoption>
|
|
<hfoption id="Stable Diffusion XL">
|
|
|
|
Accelerate `StableDiffusionXLPipeline` with T-GATE:
|
|
|
|
```py
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline
|
|
from diffusers import DPMSolverMultistepScheduler
|
|
from tgate import TgateSDXLLoader
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
use_safetensors=True,
|
|
)
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
gate_step = 10
|
|
inference_step = 25
|
|
pipe = TgateSDXLLoader(
|
|
pipe,
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step,
|
|
).to("cuda")
|
|
|
|
image = pipe.tgate(
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step
|
|
).images[0]
|
|
```
|
|
</hfoption>
|
|
<hfoption id="StableDiffusionXL with DeepCache">
|
|
|
|
Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE:
|
|
|
|
```py
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline
|
|
from diffusers import DPMSolverMultistepScheduler
|
|
from tgate import TgateSDXLDeepCacheLoader
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
use_safetensors=True,
|
|
)
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
gate_step = 10
|
|
inference_step = 25
|
|
pipe = TgateSDXLDeepCacheLoader(
|
|
pipe,
|
|
cache_interval=3,
|
|
cache_branch_id=0,
|
|
).to("cuda")
|
|
|
|
image = pipe.tgate(
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step
|
|
).images[0]
|
|
```
|
|
</hfoption>
|
|
<hfoption id="Latent Consistency Model">
|
|
|
|
Accelerate `latent-consistency/lcm-sdxl` with T-GATE:
|
|
|
|
```py
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline
|
|
from diffusers import UNet2DConditionModel, LCMScheduler
|
|
from diffusers import DPMSolverMultistepScheduler
|
|
from tgate import TgateSDXLLoader
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(
|
|
"latent-consistency/lcm-sdxl",
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
)
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
unet=unet,
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
)
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
|
|
gate_step = 1
|
|
inference_step = 4
|
|
pipe = TgateSDXLLoader(
|
|
pipe,
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step,
|
|
lcm=True
|
|
).to("cuda")
|
|
|
|
image = pipe.tgate(
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
|
gate_step=gate_step,
|
|
num_inference_steps=inference_step
|
|
).images[0]
|
|
```
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
T-GATE also supports [`StableDiffusionPipeline`] and [PixArt-alpha/PixArt-LCM-XL-2-1024-MS](https://hf.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS).
|
|
|
|
## Benchmarks
|
|
| Model | MACs | Param | Latency | Zero-shot 10K-FID on MS-COCO |
|
|
|-----------------------|----------|-----------|---------|---------------------------|
|
|
| SD-1.5 | 16.938T | 859.520M | 7.032s | 23.927 |
|
|
| SD-1.5 w/ T-GATE | 9.875T | 815.557M | 4.313s | 20.789 |
|
|
| SD-2.1 | 38.041T | 865.785M | 16.121s | 22.609 |
|
|
| SD-2.1 w/ T-GATE | 22.208T | 815.433 M | 9.878s | 19.940 |
|
|
| SD-XL | 149.438T | 2.570B | 53.187s | 24.628 |
|
|
| SD-XL w/ T-GATE | 84.438T | 2.024B | 27.932s | 22.738 |
|
|
| Pixart-Alpha | 107.031T | 611.350M | 61.502s | 38.669 |
|
|
| Pixart-Alpha w/ T-GATE | 65.318T | 462.585M | 37.867s | 35.825 |
|
|
| DeepCache (SD-XL) | 57.888T | - | 19.931s | 23.755 |
|
|
| DeepCache w/ T-GATE | 43.868T | - | 14.666s | 23.999 |
|
|
| LCM (SD-XL) | 11.955T | 2.570B | 3.805s | 25.044 |
|
|
| LCM w/ T-GATE | 11.171T | 2.024B | 3.533s | 25.028 |
|
|
| LCM (Pixart-Alpha) | 8.563T | 611.350M | 4.733s | 36.086 |
|
|
| LCM w/ T-GATE | 7.623T | 462.585M | 4.543s | 37.048 |
|
|
|
|
The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with [calflops](https://github.com/MrYxJ/calculate-flops.pytorch), and the FID is calculated with [PytorchFID](https://github.com/mseitzer/pytorch-fid).
|