mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[docs] refactoring docstrings in community/hd_painter.py (#9593)
* [docs] refactoring docstrings in community/hd_painter.py * Update examples/community/hd_painter.py Co-authored-by: Aryan <contact.aryanvs@gmail.com> * make style --------- Co-authored-by: Aryan <contact.aryanvs@gmail.com> Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
@@ -898,13 +898,16 @@ class GaussianSmoothing(nn.Module):
|
||||
Apply gaussian smoothing on a
|
||||
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
|
||||
in the input using a depthwise convolution.
|
||||
Arguments:
|
||||
channels (int, sequence): Number of channels of the input tensors. Output will
|
||||
have this number of channels as well.
|
||||
kernel_size (int, sequence): Size of the gaussian kernel.
|
||||
sigma (float, sequence): Standard deviation of the gaussian kernel.
|
||||
dim (int, optional): The number of dimensions of the data.
|
||||
Default value is 2 (spatial).
|
||||
|
||||
Args:
|
||||
channels (`int` or `sequence`):
|
||||
Number of channels of the input tensors. The output will have this number of channels as well.
|
||||
kernel_size (`int` or `sequence`):
|
||||
Size of the Gaussian kernel.
|
||||
sigma (`float` or `sequence`):
|
||||
Standard deviation of the Gaussian kernel.
|
||||
dim (`int`, *optional*, defaults to `2`):
|
||||
The number of dimensions of the data. Default is 2 (spatial dimensions).
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, sigma, dim=2):
|
||||
@@ -944,10 +947,14 @@ class GaussianSmoothing(nn.Module):
|
||||
def forward(self, input):
|
||||
"""
|
||||
Apply gaussian filter to input.
|
||||
Arguments:
|
||||
input (torch.Tensor): Input to apply gaussian filter on.
|
||||
|
||||
Args:
|
||||
input (`torch.Tensor` of shape `(N, C, H, W)`):
|
||||
Input to apply Gaussian filter on.
|
||||
|
||||
Returns:
|
||||
filtered (torch.Tensor): Filtered output.
|
||||
`torch.Tensor`:
|
||||
The filtered output tensor with the same shape as the input.
|
||||
"""
|
||||
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user