1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Refactor] Update from single file (#6428)

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update'

* update

* update

* update

* update

* update

* update

* up

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* up

* update

* update

* update

* update

* update'

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* clean

* update

* update

* clean up

* clean up

* update

* clean

* clean

* update

* updaet

* clean up

* fix docs

* update

* update

* Revert "update"

This reverts commit dbfb8f1ea9.

* update

* update

* update

* update

* fix controlnet

* fix scheduler

* fix controlnet tests
This commit is contained in:
Dhruv Nair
2024-01-23 14:42:03 +05:30
committed by GitHub
parent 5308cce994
commit fee93c81eb
22 changed files with 2082 additions and 598 deletions

View File

@@ -30,8 +30,8 @@ To learn more about how to load single file weights, see the [Load different Sta
## FromOriginalVAEMixin
[[autodoc]] loaders.single_file.FromOriginalVAEMixin
[[autodoc]] loaders.autoencoder.FromOriginalVAEMixin
## FromOriginalControlnetMixin
[[autodoc]] loaders.single_file.FromOriginalControlnetMixin
[[autodoc]] loaders.controlnet.FromOriginalControlNetMixin

View File

@@ -54,12 +54,13 @@ if is_transformers_available():
_import_structure = {}
if is_torch_available():
_import_structure["single_file"] = ["FromOriginalControlnetMixin", "FromOriginalVAEMixin"]
_import_structure["autoencoder"] = ["FromOriginalVAEMixin"]
_import_structure["controlnet"] = ["FromOriginalControlNetMixin"]
_import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
_import_structure["utils"] = ["AttnProcsLayers"]
if is_transformers_available():
_import_structure["single_file"].extend(["FromSingleFileMixin"])
_import_structure["single_file"] = ["FromSingleFileMixin"]
_import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
_import_structure["ip_adapter"] = ["IPAdapterMixin"]
@@ -69,7 +70,8 @@ _import_structure["peft"] = ["PeftAdapterMixin"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
if is_torch_available():
from .single_file import FromOriginalControlnetMixin, FromOriginalVAEMixin
from .autoencoder import FromOriginalVAEMixin
from .controlnet import FromOriginalControlNetMixin
from .unet import UNet2DConditionLoadersMixin
from .utils import AttnProcsLayers

View File

@@ -0,0 +1,126 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from huggingface_hub.utils import validate_hf_hub_args
from .single_file_utils import (
create_diffusers_vae_model_from_ldm,
fetch_ldm_config_and_checkpoint,
)
class FromOriginalVAEMixin:
"""
Load pretrained AutoencoderKL weights saved in the `.ckpt` or `.safetensors` format into a [`AutoencoderKL`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
<Tip warning={true}>
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
a VAE from SDXL or a Stable Diffusion v2 model or higher.
</Tip>
Examples:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
model = AutoencoderKL.from_single_file(url)
```
"""
original_config_file = kwargs.pop("original_config_file", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", True)
class_name = cls.__name__
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
pretrained_model_link_or_path=pretrained_model_link_or_path,
class_name=class_name,
original_config_file=original_config_file,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
use_safetensors=use_safetensors,
cache_dir=cache_dir,
)
image_size = kwargs.pop("image_size", None)
component = create_diffusers_vae_model_from_ldm(class_name, original_config, checkpoint, image_size=image_size)
vae = component["vae"]
if torch_dtype is not None:
vae = vae.to(torch_dtype)
return vae

View File

@@ -0,0 +1,127 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from huggingface_hub.utils import validate_hf_hub_args
from .single_file_utils import (
create_diffusers_controlnet_model_from_ldm,
fetch_ldm_config_and_checkpoint,
)
class FromOriginalControlNetMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
model = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
"""
original_config_file = kwargs.pop("original_config_file", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", True)
class_name = cls.__name__
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
pretrained_model_link_or_path=pretrained_model_link_or_path,
class_name=class_name,
original_config_file=original_config_file,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
use_safetensors=use_safetensors,
cache_dir=cache_dir,
)
upcast_attention = kwargs.pop("upcast_attention", False)
image_size = kwargs.pop("image_size", None)
component = create_diffusers_controlnet_model_from_ldm(
class_name, original_config, checkpoint, upcast_attention=upcast_attention, image_size=image_size
)
controlnet = component["controlnet"]
if torch_dtype is not None:
controlnet = controlnet.to(torch_dtype)
return controlnet

View File

@@ -11,39 +11,132 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import nullcontext
from io import BytesIO
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import validate_hf_hub_args
from ..utils import deprecate, is_accelerate_available, is_transformers_available, logging
from ..utils import is_transformers_available, logging
from .single_file_utils import (
create_diffusers_unet_model_from_ldm,
create_diffusers_vae_model_from_ldm,
create_scheduler_from_ldm,
create_text_encoders_and_tokenizers_from_ldm,
fetch_ldm_config_and_checkpoint,
infer_model_type,
)
if is_transformers_available():
pass
if is_accelerate_available():
from accelerate import init_empty_weights
logger = logging.get_logger(__name__)
# Pipelines that support the SDXL Refiner checkpoint
REFINER_PIPELINES = [
"StableDiffusionXLImg2ImgPipeline",
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLControlNetImg2ImgPipeline",
]
if is_transformers_available():
from transformers import AutoFeatureExtractor
def build_sub_model_components(
pipeline_components,
pipeline_class_name,
component_name,
original_config,
checkpoint,
local_files_only=False,
load_safety_checker=False,
model_type=None,
image_size=None,
**kwargs,
):
if component_name in pipeline_components:
return {}
if component_name == "unet":
num_in_channels = kwargs.pop("num_in_channels", None)
unet_components = create_diffusers_unet_model_from_ldm(
pipeline_class_name, original_config, checkpoint, num_in_channels=num_in_channels, image_size=image_size
)
return unet_components
if component_name == "vae":
vae_components = create_diffusers_vae_model_from_ldm(
pipeline_class_name, original_config, checkpoint, image_size
)
return vae_components
if component_name == "scheduler":
scheduler_type = kwargs.get("scheduler_type", "ddim")
prediction_type = kwargs.get("prediction_type", None)
scheduler_components = create_scheduler_from_ldm(
pipeline_class_name,
original_config,
checkpoint,
scheduler_type=scheduler_type,
prediction_type=prediction_type,
model_type=model_type,
)
return scheduler_components
if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
original_config,
checkpoint,
model_type=model_type,
local_files_only=local_files_only,
)
return text_encoder_components
if component_name == "safety_checker":
if load_safety_checker:
from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
)
else:
safety_checker = None
return {"safety_checker": safety_checker}
if component_name == "feature_extractor":
if load_safety_checker:
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
)
else:
feature_extractor = None
return {"feature_extractor": feature_extractor}
return
def set_additional_components(
pipeline_class_name,
original_config,
model_type=None,
):
components = {}
if pipeline_class_name in REFINER_PIPELINES:
model_type = infer_model_type(original_config, model_type=model_type)
is_refiner = model_type == "SDXL-Refiner"
components.update(
{
"requires_aesthetics_score": is_refiner,
"force_zeros_for_empty_prompt": False if is_refiner else True,
}
)
return components
class FromSingleFileMixin:
"""
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
"""
@classmethod
def from_ckpt(cls, *args, **kwargs):
deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
return cls.from_single_file(*args, **kwargs)
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
@@ -58,8 +151,7 @@ class FromSingleFileMixin:
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
Override the default `torch.dtype` and load the model with another dtype.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
@@ -85,42 +177,6 @@ class FromSingleFileMixin:
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
extract_ema (`bool`, *optional*, defaults to `False`):
Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
prediction_type (`str`, *optional*):
The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
num_in_channels (`int`, *optional*, defaults to `None`):
The number of input channels. If `None`, it is automatically inferred.
scheduler_type (`str`, *optional*, defaults to `"pndm"`):
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
"ddim"]`.
load_safety_checker (`bool`, *optional*, defaults to `True`):
Whether to load the safety checker or not.
text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
An instance of `CLIPTextModel` to use, specifically the
[clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
vae (`AutoencoderKL`, *optional*, defaults to `None`):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
of `CLIPTokenizer` by itself if needed.
original_config_file (`str`):
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
automatically inferred by looking for a key that only exists in SD2.0 models.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
@@ -143,484 +199,80 @@ class FromSingleFileMixin:
>>> pipeline.to("cuda")
```
"""
# import here to avoid circular dependency
from ..pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
original_config_file = kwargs.pop("original_config_file", None)
config_files = kwargs.pop("config_files", None)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
scheduler_type = kwargs.pop("scheduler_type", "pndm")
num_in_channels = kwargs.pop("num_in_channels", None)
upcast_attention = kwargs.pop("upcast_attention", None)
load_safety_checker = kwargs.pop("load_safety_checker", True)
prediction_type = kwargs.pop("prediction_type", None)
text_encoder = kwargs.pop("text_encoder", None)
text_encoder_2 = kwargs.pop("text_encoder_2", None)
vae = kwargs.pop("vae", None)
controlnet = kwargs.pop("controlnet", None)
adapter = kwargs.pop("adapter", None)
tokenizer = kwargs.pop("tokenizer", None)
tokenizer_2 = kwargs.pop("tokenizer_2", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", True)
use_safetensors = kwargs.pop("use_safetensors", None)
class_name = cls.__name__
pipeline_name = cls.__name__
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# TODO: For now we only support stable diffusion
stable_unclip = None
model_type = None
if pipeline_name in [
"StableDiffusionControlNetPipeline",
"StableDiffusionControlNetImg2ImgPipeline",
"StableDiffusionControlNetInpaintPipeline",
]:
from ..models.controlnet import ControlNetModel
from ..pipelines.controlnet.multicontrolnet import MultiControlNetModel
# list/tuple or a single instance of ControlNetModel or MultiControlNetModel
if not (
isinstance(controlnet, (ControlNetModel, MultiControlNetModel))
or isinstance(controlnet, (list, tuple))
and isinstance(controlnet[0], ControlNetModel)
):
raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
elif "StableDiffusion" in pipeline_name:
# Model type will be inferred from the checkpoint.
pass
elif pipeline_name == "StableUnCLIPPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "txt2img"
elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "img2img"
elif pipeline_name == "PaintByExamplePipeline":
model_type = "PaintByExample"
elif pipeline_name == "LDMTextToImagePipeline":
model_type = "LDMTextToImage"
else:
raise ValueError(f"Unhandled pipeline class: {pipeline_name}")
# remove huggingface url
has_valid_url_prefix = False
valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
for prefix in valid_url_prefixes:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
has_valid_url_prefix = True
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
if not has_valid_url_prefix:
raise ValueError(
f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
)
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
force_download=force_download,
)
pipe = download_from_original_stable_diffusion_ckpt(
pretrained_model_link_or_path,
pipeline_class=cls,
model_type=model_type,
stable_unclip=stable_unclip,
controlnet=controlnet,
adapter=adapter,
from_safetensors=from_safetensors,
extract_ema=extract_ema,
image_size=image_size,
scheduler_type=scheduler_type,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
load_safety_checker=load_safety_checker,
prediction_type=prediction_type,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
pretrained_model_link_or_path=pretrained_model_link_or_path,
class_name=class_name,
original_config_file=original_config_file,
config_files=config_files,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
use_safetensors=use_safetensors,
cache_dir=cache_dir,
)
from ..pipelines.pipeline_utils import _get_pipeline_class
pipeline_class = _get_pipeline_class(
cls,
config=None,
cache_dir=cache_dir,
)
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
model_type = kwargs.pop("model_type", None)
image_size = kwargs.pop("image_size", None)
load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
passed_class_obj.get("safety_checker", None) is not None
)
init_kwargs = {}
for name in expected_modules:
if name in passed_class_obj:
init_kwargs[name] = passed_class_obj[name]
else:
components = build_sub_model_components(
init_kwargs,
class_name,
name,
original_config,
checkpoint,
model_type=model_type,
image_size=image_size,
load_safety_checker=load_safety_checker,
local_files_only=local_files_only,
**kwargs,
)
if not components:
continue
init_kwargs.update(components)
additional_components = set_additional_components(class_name, original_config, model_type=model_type)
if additional_components:
init_kwargs.update(additional_components)
init_kwargs.update(passed_pipe_kwargs)
pipe = pipeline_class(**init_kwargs)
if torch_dtype is not None:
pipe.to(dtype=torch_dtype)
return pipe
class FromOriginalVAEMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
<Tip warning={true}>
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
a VAE from SDXL or a Stable Diffusion v2 model or higher.
</Tip>
Examples:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
model = AutoencoderKL.from_single_file(url)
```
"""
from ..models import AutoencoderKL
# import here to avoid circular dependency
from ..pipelines.stable_diffusion.convert_from_ckpt import (
convert_ldm_vae_checkpoint,
create_vae_diffusers_config,
)
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
image_size = kwargs.pop("image_size", None)
scaling_factor = kwargs.pop("scaling_factor", None)
kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
force_download=force_download,
)
if from_safetensors:
from safetensors import safe_open
checkpoint = {}
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if config_file is None:
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
config_file = BytesIO(requests.get(config_url).content)
original_config = yaml.safe_load(config_file)
# default to sd-v1-5
image_size = image_size or 512
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
if scaling_factor is None:
if (
"model" in original_config
and "params" in original_config["model"]
and "scale_factor" in original_config["model"]["params"]
):
vae_scaling_factor = original_config["model"]["params"]["scale_factor"]
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
vae = AutoencoderKL(**vae_config)
if is_accelerate_available():
from ..models.modeling_utils import load_model_dict_into_meta
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
else:
vae.load_state_dict(converted_vae_checkpoint)
if torch_dtype is not None:
vae.to(dtype=torch_dtype)
return vae
class FromOriginalControlnetMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
model = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
"""
# import here to avoid circular dependency
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
num_in_channels = kwargs.pop("num_in_channels", None)
use_linear_projection = kwargs.pop("use_linear_projection", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
upcast_attention = kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
force_download=force_download,
)
if config_file is None:
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
config_file = BytesIO(requests.get(config_url).content)
image_size = image_size or 512
controlnet = download_controlnet_from_original_ckpt(
pretrained_model_link_or_path,
original_config_file=config_file,
image_size=image_size,
extract_ema=extract_ema,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
from_safetensors=from_safetensors,
use_linear_projection=use_linear_projection,
)
if torch_dtype is not None:
controlnet.to(dtype=torch_dtype)
return controlnet

File diff suppressed because it is too large Load Diff

View File

@@ -17,7 +17,6 @@ import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalVAEMixin
from ...utils import is_torch_version
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
@@ -162,7 +161,7 @@ class TemporalDecoder(nn.Module):
return sample
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.

View File

@@ -19,7 +19,7 @@ from torch import nn
from torch.nn import functional as F
from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import FromOriginalControlnetMixin
from ..loaders import FromOriginalControlNetMixin
from ..utils import BaseOutput, logging
from .attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
@@ -108,7 +108,7 @@ class ControlNetConditioningEmbedding(nn.Module):
return embedding
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
"""
A ControlNet model.

View File

@@ -32,6 +32,7 @@ from .. import __version__
from ..utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
SAFETENSORS_FILE_EXTENSION,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
_add_variant,
@@ -102,10 +103,11 @@ def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[
Reads a checkpoint file, returning properly formatted errors if they arise.
"""
try:
if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
return torch.load(checkpoint_file, map_location="cpu")
else:
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == SAFETENSORS_FILE_EXTENSION:
return safetensors.torch.load_file(checkpoint_file, device="cpu")
else:
return torch.load(checkpoint_file, map_location="cpu")
except Exception as e:
try:
with open(checkpoint_file) as f:

View File

@@ -351,7 +351,7 @@ def get_class_obj_and_candidates(
def _get_pipeline_class(
class_obj,
config,
config=None,
load_connected_pipeline=False,
custom_pipeline=None,
repo_id=None,
@@ -389,7 +389,12 @@ def _get_pipeline_class(
return class_obj
diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
class_name = config["_class_name"]
class_name = class_name or config["_class_name"]
if not class_name:
raise ValueError(
"The class name could not be found in the configuration file. Please make sure to pass the correct `class_name`."
)
class_name = class_name[4:] if class_name.startswith("Flax") else class_name
pipeline_cls = getattr(diffusers_module, class_name)

View File

@@ -28,6 +28,7 @@ from .constants import (
MIN_PEFT_VERSION,
ONNX_EXTERNAL_WEIGHTS_NAME,
ONNX_WEIGHTS_NAME,
SAFETENSORS_FILE_EXTENSION,
SAFETENSORS_WEIGHTS_NAME,
USE_PEFT_BACKEND,
WEIGHTS_NAME,

View File

@@ -31,6 +31,7 @@ WEIGHTS_NAME = "diffusion_pytorch_model.bin"
FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack"
ONNX_WEIGHTS_NAME = "model.onnx"
SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors"
SAFETENSORS_FILE_EXTENSION = "safetensors"
ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb"
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules"

View File

@@ -244,15 +244,15 @@ def _get_model_file(
pretrained_model_name_or_path: Union[str, Path],
*,
weights_name: str,
subfolder: Optional[str],
cache_dir: Optional[str],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Optional[str],
user_agent: Union[Dict, str, None],
revision: Optional[str],
subfolder: Optional[str] = None,
cache_dir: Optional[str] = None,
force_download: bool = False,
proxies: Optional[Dict] = None,
resume_download: bool = False,
local_files_only: bool = False,
token: Optional[str] = None,
user_agent: Optional[Union[Dict, str]] = None,
revision: Optional[str] = None,
commit_hash: Optional[str] = None,
):
pretrained_model_name_or_path = str(pretrained_model_name_or_path)

View File

@@ -37,6 +37,7 @@ from diffusers.utils.testing_utils import (
enable_full_determinism,
load_image,
load_numpy,
numpy_cosine_similarity_distance,
require_python39_or_higher,
require_torch_2,
require_torch_gpu,
@@ -1022,39 +1023,49 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
def test_load_local(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipe_1 = StableDiffusionControlNetPipeline.from_pretrained(
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
controlnet = ControlNetModel.from_single_file(
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
)
pipe_2 = StableDiffusionControlNetPipeline.from_single_file(
pipe_sf = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
scheduler_type="pndm",
)
pipes = [pipe_1, pipe_2]
images = []
pipe_sf.unet.set_default_attn_processor()
pipe_sf.enable_model_cpu_offload()
for pipe in pipes:
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
prompt = "bird"
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(
prompt,
image=control_image,
generator=generator,
output_type="np",
num_inference_steps=3,
).images[0]
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
images.append(output.images[0])
generator = torch.Generator(device="cpu").manual_seed(0)
output_sf = pipe_sf(
prompt,
image=control_image,
generator=generator,
output_type="np",
num_inference_steps=3,
).images[0]
del pipe
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
assert max_diff < 1e-3
@slow

View File

@@ -39,6 +39,7 @@ from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
@@ -421,46 +422,53 @@ class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
def test_load_local(self):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
pipe_1 = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
controlnet = ControlNetModel.from_single_file(
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
)
pipe_2 = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
pipe_sf = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
scheduler_type="pndm",
)
pipe_sf.unet.set_default_attn_processor()
pipe_sf.enable_model_cpu_offload()
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
image = load_image(
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
).resize((512, 512))
prompt = "bird"
pipes = [pipe_1, pipe_2]
images = []
for pipe in pipes:
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(
prompt,
image=image,
control_image=control_image,
strength=0.9,
generator=generator,
output_type="np",
num_inference_steps=3,
).images[0]
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
output = pipe(
prompt,
image=image,
control_image=control_image,
strength=0.9,
generator=generator,
output_type="np",
num_inference_steps=3,
)
images.append(output.images[0])
generator = torch.Generator(device="cpu").manual_seed(0)
output_sf = pipe_sf(
prompt,
image=image,
control_image=control_image,
strength=0.9,
generator=generator,
output_type="np",
num_inference_steps=3,
).images[0]
del pipe
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
assert max_diff < 1e-3

View File

@@ -569,6 +569,7 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
safety_checker=None,
controlnet=controlnet,
scheduler_type="pndm",
)
control_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
@@ -605,4 +606,5 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
assert np.abs(images[0] - images[1]).max() < 1e-3
max_diff = numpy_cosine_similarity_distance(images[0].flatten(), images[1].flatten())
assert max_diff < 1e-3

View File

@@ -31,7 +31,14 @@ from diffusers import (
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, slow, torch_device
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_image,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
@@ -819,6 +826,41 @@ class ControlNetSDXLPipelineSlowTests(unittest.TestCase):
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853])
assert np.allclose(original_image, expected_image, atol=1e-04)
def test_download_ckpt_diff_format_is_same(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16)
single_file_url = (
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
)
pipe_single_file = StableDiffusionXLControlNetPipeline.from_single_file(
single_file_url, controlnet=controlnet, torch_dtype=torch.float16
)
pipe_single_file.unet.set_default_attn_processor()
pipe_single_file.enable_model_cpu_offload()
pipe_single_file.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Stormtrooper's lecture"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
)
single_file_images = pipe_single_file(
prompt, image=image, generator=generator, output_type="np", num_inference_steps=2
).images
generator = torch.Generator(device="cpu").manual_seed(0)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=2).images
assert images[0].shape == (512, 512, 3)
assert single_file_images[0].shape == (512, 512, 3)
max_diff = numpy_cosine_similarity_distance(images[0].flatten(), single_file_images[0].flatten())
assert max_diff < 5e-2
class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests):
def test_controlnet_sdxl_guess(self):

View File

@@ -1262,13 +1262,13 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase):
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
sf_pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
sf_pipe.scheduler = DDIMScheduler.from_config(sf_pipe.scheduler.config)
sf_pipe.unet.set_attn_processor(AttnProcessor())
sf_pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image_ckpt = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
image_single_file = sf_pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
@@ -1278,7 +1278,7 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase):
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
assert max_diff < 1e-3

View File

@@ -43,6 +43,7 @@ from diffusers.utils.testing_utils import (
load_image,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
require_python39_or_higher,
require_torch_2,
require_torch_gpu,
@@ -771,7 +772,9 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
inputs["num_inference_steps"] = 5
image = pipe(**inputs).images[0]
assert np.max(np.abs(image - image_ckpt)) < 5e-4
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
assert max_diff < 1e-4
@slow

View File

@@ -14,6 +14,7 @@
# limitations under the License.
import copy
import gc
import tempfile
import unittest
@@ -1024,6 +1025,11 @@ class StableDiffusionXLPipelineFastTests(
@slow
class StableDiffusionXLPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_lcm(self):
torch.manual_seed(0)
unet = UNet2DConditionModel.from_pretrained(
@@ -1049,3 +1055,30 @@ class StableDiffusionXLPipelineIntegrationTests(unittest.TestCase):
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
assert max_diff < 1e-2
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = (
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
)
pipe = StableDiffusionXLPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image_ckpt = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
assert max_diff < 6e-3

View File

@@ -699,3 +699,40 @@ class AdapterSDXLPipelineSlowTests(unittest.TestCase):
image_slice = images[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226])
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = (
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
)
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16)
prompt = "toy"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png"
)
pipe_single_file = StableDiffusionXLAdapterPipeline.from_single_file(
ckpt_path,
adapter=adapter,
torch_dtype=torch.float16,
)
pipe_single_file.enable_model_cpu_offload()
pipe_single_file.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
images_single_file = pipe_single_file(
prompt, image=image, generator=generator, output_type="np", num_inference_steps=3
).images
generator = torch.Generator(device="cpu").manual_seed(0)
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
adapter=adapter,
torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
assert images_single_file[0].shape == (768, 512, 3)
assert images[0].shape == (768, 512, 3)
max_diff = numpy_cosine_similarity_distance(images[0].flatten(), images_single_file[0].flatten())
assert max_diff < 5e-3

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
@@ -31,15 +32,19 @@ from transformers import (
from diffusers import (
AutoencoderKL,
AutoencoderTiny,
DDIMScheduler,
EulerDiscreteScheduler,
LCMScheduler,
StableDiffusionXLImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
@@ -763,3 +768,44 @@ class StableDiffusionXLImg2ImgRefinerOnlyPipelineFastTests(
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@slow
class StableDiffusionXLImg2ImgIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors"
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
)
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_default_attn_processor()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
pipe_single_file = StableDiffusionXLImg2ImgPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe_single_file.scheduler = DDIMScheduler.from_config(pipe_single_file.scheduler.config)
pipe_single_file.unet.set_default_attn_processor()
pipe_single_file.enable_model_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
image_single_file = pipe_single_file(
prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np"
).images[0]
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
assert max_diff < 5e-2