1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

JAX/Flax safety checker (#558)

* Starting to integrate safety checker.

* Fix initialization of CLIPVisionConfig

* Remove commented lines.

* make style

* Remove unused import

* Pass dtype to modules

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Pass dtype to modules

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
Pedro Cuenca
2022-09-19 15:26:49 +02:00
committed by GitHub
parent b1182bcf21
commit fde9abcbba
2 changed files with 115 additions and 1 deletions

View File

@@ -6,7 +6,7 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_onnx_available, is_transformers_available
from ...utils import BaseOutput, is_flax_available, is_onnx_available, is_transformers_available
@dataclass
@@ -35,3 +35,6 @@ if is_transformers_available():
if is_transformers_available() and is_onnx_available():
from .pipeline_stable_diffusion_onnx import StableDiffusionOnnxPipeline
if is_transformers_available() and is_flax_available():
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker

View File

@@ -0,0 +1,111 @@
import warnings
import numpy as np
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from flax.struct import field
from transformers import CLIPVisionConfig
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
from ...configuration_utils import ConfigMixin, flax_register_to_config
from ...modeling_flax_utils import FlaxModelMixin
def jax_cosine_distance(emb_1, emb_2, eps=1e-12):
norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T
norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T
return jnp.matmul(norm_emb_1, norm_emb_2.T)
@flax_register_to_config
class FlaxStableDiffusionSafetyChecker(nn.Module, FlaxModelMixin, ConfigMixin):
projection_dim: int = 768
# CLIPVisionConfig fields
vision_config: dict = field(default_factory=dict)
dtype: jnp.dtype = jnp.float32
def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict:
# init input tensor
input_shape = (
1,
self.vision_config["image_size"],
self.vision_config["image_size"],
self.vision_config["num_channels"],
)
pixel_values = jax.random.normal(rng, input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.init(rngs, pixel_values)["params"]
def setup(self):
clip_vision_config = CLIPVisionConfig(**self.vision_config)
self.vision_model = FlaxCLIPVisionModule(clip_vision_config, dtype=self.dtype)
self.visual_projection = nn.Dense(self.projection_dim, use_bias=False, dtype=self.dtype)
self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.projection_dim))
self.special_care_embeds = self.param(
"special_care_embeds", jax.nn.initializers.ones, (3, self.projection_dim)
)
self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,))
self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,))
def __call__(self, clip_input):
pooled_output = self.vision_model(clip_input)[1]
image_embeds = self.visual_projection(pooled_output)
special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds)
cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds)
return special_cos_dist, cos_dist
def filtered_with_scores(self, special_cos_dist, cos_dist, images):
batch_size = special_cos_dist.shape[0]
special_cos_dist = np.asarray(special_cos_dist)
cos_dist = np.asarray(cos_dist)
result = []
for i in range(batch_size):
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
adjustment = 0.0
for concept_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concept_idx]
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
adjustment = 0.01
for concept_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concept_idx]
concept_threshold = self.concept_embeds_weights[concept_idx].item()
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(concept_idx)
result.append(result_img)
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
images_was_copied = False
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if not images_was_copied:
images_was_copied = True
images = images.copy()
images[idx] = np.zeros(images[idx].shape) # black image
if any(has_nsfw_concepts):
warnings.warn(
"Potential NSFW content was detected in one or more images. A black image will be returned"
" instead. Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts