mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
JAX/Flax safety checker (#558)
* Starting to integrate safety checker. * Fix initialization of CLIPVisionConfig * Remove commented lines. * make style * Remove unused import * Pass dtype to modules Co-authored-by: Suraj Patil <surajp815@gmail.com> * Pass dtype to modules Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
@@ -6,7 +6,7 @@ import numpy as np
|
||||
import PIL
|
||||
from PIL import Image
|
||||
|
||||
from ...utils import BaseOutput, is_onnx_available, is_transformers_available
|
||||
from ...utils import BaseOutput, is_flax_available, is_onnx_available, is_transformers_available
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -35,3 +35,6 @@ if is_transformers_available():
|
||||
|
||||
if is_transformers_available() and is_onnx_available():
|
||||
from .pipeline_stable_diffusion_onnx import StableDiffusionOnnxPipeline
|
||||
|
||||
if is_transformers_available() and is_flax_available():
|
||||
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
|
||||
|
||||
111
src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py
Normal file
111
src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
from flax import linen as nn
|
||||
from flax.core.frozen_dict import FrozenDict
|
||||
from flax.struct import field
|
||||
from transformers import CLIPVisionConfig
|
||||
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
|
||||
|
||||
from ...configuration_utils import ConfigMixin, flax_register_to_config
|
||||
from ...modeling_flax_utils import FlaxModelMixin
|
||||
|
||||
|
||||
def jax_cosine_distance(emb_1, emb_2, eps=1e-12):
|
||||
norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T
|
||||
norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T
|
||||
return jnp.matmul(norm_emb_1, norm_emb_2.T)
|
||||
|
||||
|
||||
@flax_register_to_config
|
||||
class FlaxStableDiffusionSafetyChecker(nn.Module, FlaxModelMixin, ConfigMixin):
|
||||
projection_dim: int = 768
|
||||
# CLIPVisionConfig fields
|
||||
vision_config: dict = field(default_factory=dict)
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict:
|
||||
# init input tensor
|
||||
input_shape = (
|
||||
1,
|
||||
self.vision_config["image_size"],
|
||||
self.vision_config["image_size"],
|
||||
self.vision_config["num_channels"],
|
||||
)
|
||||
pixel_values = jax.random.normal(rng, input_shape)
|
||||
params_rng, dropout_rng = jax.random.split(rng)
|
||||
rngs = {"params": params_rng, "dropout": dropout_rng}
|
||||
return self.init(rngs, pixel_values)["params"]
|
||||
|
||||
def setup(self):
|
||||
clip_vision_config = CLIPVisionConfig(**self.vision_config)
|
||||
self.vision_model = FlaxCLIPVisionModule(clip_vision_config, dtype=self.dtype)
|
||||
self.visual_projection = nn.Dense(self.projection_dim, use_bias=False, dtype=self.dtype)
|
||||
|
||||
self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.projection_dim))
|
||||
self.special_care_embeds = self.param(
|
||||
"special_care_embeds", jax.nn.initializers.ones, (3, self.projection_dim)
|
||||
)
|
||||
|
||||
self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,))
|
||||
self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,))
|
||||
|
||||
def __call__(self, clip_input):
|
||||
pooled_output = self.vision_model(clip_input)[1]
|
||||
image_embeds = self.visual_projection(pooled_output)
|
||||
|
||||
special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds)
|
||||
cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds)
|
||||
return special_cos_dist, cos_dist
|
||||
|
||||
def filtered_with_scores(self, special_cos_dist, cos_dist, images):
|
||||
batch_size = special_cos_dist.shape[0]
|
||||
special_cos_dist = np.asarray(special_cos_dist)
|
||||
cos_dist = np.asarray(cos_dist)
|
||||
|
||||
result = []
|
||||
for i in range(batch_size):
|
||||
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
|
||||
|
||||
# increase this value to create a stronger `nfsw` filter
|
||||
# at the cost of increasing the possibility of filtering benign image inputs
|
||||
adjustment = 0.0
|
||||
|
||||
for concept_idx in range(len(special_cos_dist[0])):
|
||||
concept_cos = special_cos_dist[i][concept_idx]
|
||||
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
||||
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
||||
if result_img["special_scores"][concept_idx] > 0:
|
||||
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
|
||||
adjustment = 0.01
|
||||
|
||||
for concept_idx in range(len(cos_dist[0])):
|
||||
concept_cos = cos_dist[i][concept_idx]
|
||||
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
||||
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
||||
if result_img["concept_scores"][concept_idx] > 0:
|
||||
result_img["bad_concepts"].append(concept_idx)
|
||||
|
||||
result.append(result_img)
|
||||
|
||||
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
||||
|
||||
images_was_copied = False
|
||||
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
|
||||
if has_nsfw_concept:
|
||||
if not images_was_copied:
|
||||
images_was_copied = True
|
||||
images = images.copy()
|
||||
|
||||
images[idx] = np.zeros(images[idx].shape) # black image
|
||||
|
||||
if any(has_nsfw_concepts):
|
||||
warnings.warn(
|
||||
"Potential NSFW content was detected in one or more images. A black image will be returned"
|
||||
" instead. Try again with a different prompt and/or seed."
|
||||
)
|
||||
|
||||
return images, has_nsfw_concepts
|
||||
Reference in New Issue
Block a user