mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -716,11 +716,16 @@ def main(args):
|
||||
" doing mixed precision training. copy of the weights should still be float32."
|
||||
)
|
||||
|
||||
if unet.dtype != torch.float32:
|
||||
raise ValueError(f"Unet loaded as datatype {unet.dtype}. {low_precision_error_string}")
|
||||
if accelerator.unwrap_model(unet).dtype != torch.float32:
|
||||
raise ValueError(
|
||||
f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
|
||||
)
|
||||
|
||||
if args.train_text_encoder and text_encoder.dtype != torch.float32:
|
||||
raise ValueError(f"Text encoder loaded as datatype {text_encoder.dtype}. {low_precision_error_string}")
|
||||
if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
|
||||
raise ValueError(
|
||||
f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
|
||||
f" {low_precision_error_string}"
|
||||
)
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
|
||||
Reference in New Issue
Block a user