1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[dreambooth lora sdxl] add sdxl micro conditioning (#6795)

* add micro conditioning

* remove redundant lines

* style

* fix missing 's'

* fix missing shape bug due to missing RGB if statement

* remove redundant if, change arg order

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
Linoy Tsaban
2024-02-04 16:00:09 +02:00
committed by GitHub
parent 13001ee315
commit fbdf26bac5

View File

@@ -19,6 +19,7 @@ import itertools
import logging
import math
import os
import random
import shutil
import warnings
from pathlib import Path
@@ -40,6 +41,7 @@ from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
@@ -304,18 +306,6 @@ def parse_args(input_args=None):
" resolution"
),
)
parser.add_argument(
"--crops_coords_top_left_h",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--crops_coords_top_left_w",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--center_crop",
default=False,
@@ -325,6 +315,11 @@ def parse_args(input_args=None):
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_text_encoder",
action="store_true",
@@ -669,6 +664,41 @@ class DreamBoothDataset(Dataset):
self.instance_images = []
for img in instance_images:
self.instance_images.extend(itertools.repeat(img, repeats))
# image processing to prepare for using SD-XL micro-conditioning
self.original_sizes = []
self.crop_top_lefts = []
self.pixel_values = []
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
train_flip = transforms.RandomHorizontalFlip(p=1.0)
train_transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
for image in self.instance_images:
image = exif_transpose(image)
if not image.mode == "RGB":
image = image.convert("RGB")
self.original_sizes.append((image.height, image.width))
image = train_resize(image)
if args.random_flip and random.random() < 0.5:
# flip
image = train_flip(image)
if args.center_crop:
y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
image = train_crop(image)
else:
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
image = crop(image, y1, x1, h, w)
crop_top_left = (y1, x1)
self.crop_top_lefts.append(crop_top_left)
image = train_transforms(image)
self.pixel_values.append(image)
self.num_instance_images = len(self.instance_images)
self._length = self.num_instance_images
@@ -698,12 +728,12 @@ class DreamBoothDataset(Dataset):
def __getitem__(self, index):
example = {}
instance_image = self.instance_images[index % self.num_instance_images]
instance_image = exif_transpose(instance_image)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
instance_image = self.pixel_values[index % self.num_instance_images]
original_size = self.original_sizes[index % self.num_instance_images]
crop_top_left = self.crop_top_lefts[index % self.num_instance_images]
example["instance_images"] = instance_image
example["original_size"] = original_size
example["crop_top_left"] = crop_top_left
if self.custom_instance_prompts:
caption = self.custom_instance_prompts[index % self.num_instance_images]
@@ -730,6 +760,8 @@ class DreamBoothDataset(Dataset):
def collate_fn(examples, with_prior_preservation=False):
pixel_values = [example["instance_images"] for example in examples]
prompts = [example["instance_prompt"] for example in examples]
original_sizes = [example["original_size"] for example in examples]
crop_top_lefts = [example["crop_top_left"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
@@ -740,7 +772,12 @@ def collate_fn(examples, with_prior_preservation=False):
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
batch = {"pixel_values": pixel_values, "prompts": prompts}
batch = {
"pixel_values": pixel_values,
"prompts": prompts,
"original_sizes": original_sizes,
"crop_top_lefts": crop_top_lefts,
}
return batch
@@ -1233,11 +1270,9 @@ def main(args):
# pooled text embeddings
# time ids
def compute_time_ids():
def compute_time_ids(original_size, crops_coords_top_left):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
original_size = (args.resolution, args.resolution)
target_size = (args.resolution, args.resolution)
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
@@ -1254,9 +1289,6 @@ def main(args):
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
return prompt_embeds, pooled_prompt_embeds
# Handle instance prompt.
instance_time_ids = compute_time_ids()
# If no type of tuning is done on the text_encoder and custom instance prompts are NOT
# provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
# the redundant encoding.
@@ -1267,7 +1299,6 @@ def main(args):
# Handle class prompt for prior-preservation.
if args.with_prior_preservation:
class_time_ids = compute_time_ids()
if not args.train_text_encoder:
class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
args.class_prompt, text_encoders, tokenizers
@@ -1282,9 +1313,6 @@ def main(args):
# If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
# pack the statically computed variables appropriately here. This is so that we don't
# have to pass them to the dataloader.
add_time_ids = instance_time_ids
if args.with_prior_preservation:
add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)
if not train_dataset.custom_instance_prompts:
if not args.train_text_encoder:
@@ -1436,18 +1464,24 @@ def main(args):
# (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# time ids
add_time_ids = torch.cat(
[
compute_time_ids(original_size=s, crops_coords_top_left=c)
for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])
]
)
# Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
if not train_dataset.custom_instance_prompts:
elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
else:
elems_to_repeat_text_embeds = 1
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
# Predict the noise residual
if not args.train_text_encoder:
unet_added_conditions = {
"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1),
"time_ids": add_time_ids,
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
}
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
@@ -1459,7 +1493,7 @@ def main(args):
return_dict=False,
)[0]
else:
unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)}
unet_added_conditions = {"time_ids": add_time_ids}
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two],
tokenizers=None,