mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[i8n-pt] Fix grammar and expand Portuguese documentation (#12598)
* Updates Portuguese documentation for Diffusers library Enhances the Portuguese documentation with: - Restructured table of contents for improved navigation - Added placeholder page for in-translation content - Refined language and improved readability in existing pages - Introduced a new page on basic Stable Diffusion performance guidance Improves overall documentation structure and user experience for Portuguese-speaking users * Removes untranslated sections from Portuguese documentation Cleans up the Portuguese documentation table of contents by removing placeholder sections marked as "Em tradução" (In translation) Removes the in_translation.md file and associated table of contents entries for sections that are not yet translated, improving documentation clarity
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: 🧨 Diffusers
|
||||
- local: quicktour
|
||||
title: Tour rápido
|
||||
- local: installation
|
||||
title: Instalação
|
||||
- local: index
|
||||
title: Diffusers
|
||||
- local: installation
|
||||
title: Instalação
|
||||
- local: quicktour
|
||||
title: Tour rápido
|
||||
- local: stable_diffusion
|
||||
title: Desempenho básico
|
||||
title: Primeiros passos
|
||||
|
||||
@@ -18,11 +18,11 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Diffusers
|
||||
|
||||
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou queira treinar seu próprio modelo de difusão, 🤗 Diffusers é uma modular caixa de ferramentas que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
|
||||
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou quer treinar seu próprio modelo de difusão, 🤗 Diffusers é uma caixa de ferramentas modular que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
|
||||
|
||||
A Biblioteca tem três componentes principais:
|
||||
|
||||
- Pipelines de última geração para a geração em poucas linhas de código. Têm muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
|
||||
- Pipelines de última geração para a geração em poucas linhas de código. Há muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
|
||||
- Intercambiáveis [agendadores de ruído](api/schedulers/overview) para balancear as compensações entre velocidade e qualidade de geração.
|
||||
- [Modelos](api/models) pré-treinados que podem ser usados como se fossem blocos de construção, e combinados com agendadores, para criar seu próprio sistema de difusão de ponta a ponta.
|
||||
|
||||
|
||||
@@ -21,7 +21,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
Recomenda-se instalar 🤗 Diffusers em um [ambiente virtual](https://docs.python.org/3/library/venv.html).
|
||||
Se você não está familiarizado com ambiente virtuals, veja o [guia](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
|
||||
Um ambiente virtual facilita gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
|
||||
|
||||
Comece criando um ambiente virtual no diretório do projeto:
|
||||
|
||||
@@ -100,12 +100,12 @@ pip install -e ".[flax]"
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
|
||||
Esses comandos irão vincular a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
|
||||
Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas.
|
||||
Por exemplo, se o pacote python for tipicamente instalado no `~/anaconda3/envs/main/lib/python3.10/site-packages/`, o Python também irá procurar na pasta `~/diffusers/` que você clonou.
|
||||
|
||||
> [!WARNING]
|
||||
> Você deve deixar a pasta `diffusers` se você quiser continuar usando a biblioteca.
|
||||
> Você deve manter a pasta `diffusers` se quiser continuar usando a biblioteca.
|
||||
|
||||
Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando:
|
||||
|
||||
|
||||
132
docs/source/pt/stable_diffusion.md
Normal file
132
docs/source/pt/stable_diffusion.md
Normal file
@@ -0,0 +1,132 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
# Desempenho básico
|
||||
|
||||
Difusão é um processo aleatório que demanda muito processamento. Você pode precisar executar o [`DiffusionPipeline`] várias vezes antes de obter o resultado desejado. Por isso é importante equilibrar cuidadosamente a velocidade de geração e o uso de memória para iterar mais rápido.
|
||||
|
||||
Este guia recomenda algumas dicas básicas de desempenho para usar o [`DiffusionPipeline`]. Consulte a seção de documentação sobre Otimização de Inferência, como [Acelerar inferência](./optimization/fp16) ou [Reduzir uso de memória](./optimization/memory) para guias de desempenho mais detalhados.
|
||||
|
||||
## Uso de memória
|
||||
|
||||
Reduzir a quantidade de memória usada indiretamente acelera a geração e pode ajudar um modelo a caber no dispositivo.
|
||||
|
||||
O método [`~DiffusionPipeline.enable_model_cpu_offload`] move um modelo para a CPU quando não está em uso para economizar memória da GPU.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda"
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
|
||||
prompt = """
|
||||
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
|
||||
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
|
||||
"""
|
||||
pipeline(prompt).images[0]
|
||||
print(f"Memória máxima reservada: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
|
||||
```
|
||||
|
||||
## Velocidade de inferência
|
||||
|
||||
O processo de remoção de ruído é o mais exigente computacionalmente durante a difusão. Métodos que otimizam este processo aceleram a velocidade de inferência. Experimente os seguintes métodos para acelerar.
|
||||
|
||||
- Adicione `device_map="cuda"` para colocar o pipeline em uma GPU. Colocar um modelo em um acelerador, como uma GPU, aumenta a velocidade porque realiza computações em paralelo.
|
||||
- Defina `torch_dtype=torch.bfloat16` para executar o pipeline em meia-precisão. Reduzir a precisão do tipo de dado aumenta a velocidade porque leva menos tempo para realizar computações em precisão mais baixa.
|
||||
|
||||
```py
|
||||
import torch
|
||||
import time
|
||||
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda"
|
||||
)
|
||||
```
|
||||
|
||||
- Use um agendador mais rápido, como [`DPMSolverMultistepScheduler`], que requer apenas ~20-25 passos.
|
||||
- Defina `num_inference_steps` para um valor menor. Reduzir o número de passos de inferência reduz o número total de computações. No entanto, isso pode resultar em menor qualidade de geração.
|
||||
|
||||
```py
|
||||
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
prompt = """
|
||||
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
|
||||
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
|
||||
"""
|
||||
|
||||
start_time = time.perf_counter()
|
||||
image = pipeline(prompt).images[0]
|
||||
end_time = time.perf_counter()
|
||||
|
||||
print(f"Geração de imagem levou {end_time - start_time:.3f} segundos")
|
||||
```
|
||||
|
||||
## Qualidade de geração
|
||||
|
||||
Muitos modelos de difusão modernos entregam imagens de alta qualidade imediatamente. No entanto, você ainda pode melhorar a qualidade de geração experimentando o seguinte.
|
||||
|
||||
- Experimente um prompt mais detalhado e descritivo. Inclua detalhes como o meio da imagem, assunto, estilo e estética. Um prompt negativo também pode ajudar, guiando um modelo para longe de características indesejáveis usando palavras como baixa qualidade ou desfocado.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda"
|
||||
)
|
||||
|
||||
prompt = """
|
||||
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
|
||||
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
|
||||
"""
|
||||
negative_prompt = "low quality, blurry, ugly, poor details"
|
||||
pipeline(prompt, negative_prompt=negative_prompt).images[0]
|
||||
```
|
||||
|
||||
Para mais detalhes sobre como criar prompts melhores, consulte a documentação sobre [Técnicas de prompt](./using-diffusers/weighted_prompts).
|
||||
|
||||
- Experimente um agendador diferente, como [`HeunDiscreteScheduler`] ou [`LMSDiscreteScheduler`], que sacrifica velocidade de geração por qualidade.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline, HeunDiscreteScheduler
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda"
|
||||
)
|
||||
pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
prompt = """
|
||||
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
|
||||
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
|
||||
"""
|
||||
negative_prompt = "low quality, blurry, ugly, poor details"
|
||||
pipeline(prompt, negative_prompt=negative_prompt).images[0]
|
||||
```
|
||||
|
||||
## Próximos passos
|
||||
|
||||
Diffusers oferece otimizações mais avançadas e poderosas, como [group-offloading](./optimization/memory#group-offloading) e [compilação regional](./optimization/fp16#regional-compilation). Para saber mais sobre como maximizar o desempenho, consulte a seção sobre Otimização de Inferência.
|
||||
Reference in New Issue
Block a user