1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[i8n-pt] Fix grammar and expand Portuguese documentation (#12598)

* Updates Portuguese documentation for Diffusers library

Enhances the Portuguese documentation with:
- Restructured table of contents for improved navigation
- Added placeholder page for in-translation content
- Refined language and improved readability in existing pages
- Introduced a new page on basic Stable Diffusion performance guidance

Improves overall documentation structure and user experience for Portuguese-speaking users

* Removes untranslated sections from Portuguese documentation

Cleans up the Portuguese documentation table of contents by removing placeholder sections marked as "Em tradução" (In translation)

Removes the in_translation.md file and associated table of contents entries for sections that are not yet translated, improving documentation clarity
This commit is contained in:
cdutr
2025-11-24 14:07:32 -08:00
committed by GitHub
parent d176f61fcf
commit fbcd3ba6b2
4 changed files with 145 additions and 11 deletions

View File

@@ -1,8 +1,10 @@
- sections:
- local: index
title: 🧨 Diffusers
- local: quicktour
title: Tour rápido
- local: installation
title: Instalação
- local: index
title: Diffusers
- local: installation
title: Instalação
- local: quicktour
title: Tour rápido
- local: stable_diffusion
title: Desempenho básico
title: Primeiros passos

View File

@@ -18,11 +18,11 @@ specific language governing permissions and limitations under the License.
# Diffusers
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou queira treinar seu próprio modelo de difusão, 🤗 Diffusers é uma modular caixa de ferramentas que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou quer treinar seu próprio modelo de difusão, 🤗 Diffusers é uma caixa de ferramentas modular que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
A Biblioteca tem três componentes principais:
- Pipelines de última geração para a geração em poucas linhas de código. Têm muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
- Pipelines de última geração para a geração em poucas linhas de código. muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
- Intercambiáveis [agendadores de ruído](api/schedulers/overview) para balancear as compensações entre velocidade e qualidade de geração.
- [Modelos](api/models) pré-treinados que podem ser usados como se fossem blocos de construção, e combinados com agendadores, para criar seu próprio sistema de difusão de ponta a ponta.

View File

@@ -21,7 +21,7 @@ specific language governing permissions and limitations under the License.
Recomenda-se instalar 🤗 Diffusers em um [ambiente virtual](https://docs.python.org/3/library/venv.html).
Se você não está familiarizado com ambiente virtuals, veja o [guia](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
Um ambiente virtual facilita gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
Comece criando um ambiente virtual no diretório do projeto:
@@ -100,12 +100,12 @@ pip install -e ".[flax]"
</jax>
</frameworkcontent>
Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
Esses comandos irão vincular a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas.
Por exemplo, se o pacote python for tipicamente instalado no `~/anaconda3/envs/main/lib/python3.10/site-packages/`, o Python também irá procurar na pasta `~/diffusers/` que você clonou.
> [!WARNING]
> Você deve deixar a pasta `diffusers` se você quiser continuar usando a biblioteca.
> Você deve manter a pasta `diffusers` se quiser continuar usando a biblioteca.
Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando:

View File

@@ -0,0 +1,132 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Desempenho básico
Difusão é um processo aleatório que demanda muito processamento. Você pode precisar executar o [`DiffusionPipeline`] várias vezes antes de obter o resultado desejado. Por isso é importante equilibrar cuidadosamente a velocidade de geração e o uso de memória para iterar mais rápido.
Este guia recomenda algumas dicas básicas de desempenho para usar o [`DiffusionPipeline`]. Consulte a seção de documentação sobre Otimização de Inferência, como [Acelerar inferência](./optimization/fp16) ou [Reduzir uso de memória](./optimization/memory) para guias de desempenho mais detalhados.
## Uso de memória
Reduzir a quantidade de memória usada indiretamente acelera a geração e pode ajudar um modelo a caber no dispositivo.
O método [`~DiffusionPipeline.enable_model_cpu_offload`] move um modelo para a CPU quando não está em uso para economizar memória da GPU.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.enable_model_cpu_offload()
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
print(f"Memória máxima reservada: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
```
## Velocidade de inferência
O processo de remoção de ruído é o mais exigente computacionalmente durante a difusão. Métodos que otimizam este processo aceleram a velocidade de inferência. Experimente os seguintes métodos para acelerar.
- Adicione `device_map="cuda"` para colocar o pipeline em uma GPU. Colocar um modelo em um acelerador, como uma GPU, aumenta a velocidade porque realiza computações em paralelo.
- Defina `torch_dtype=torch.bfloat16` para executar o pipeline em meia-precisão. Reduzir a precisão do tipo de dado aumenta a velocidade porque leva menos tempo para realizar computações em precisão mais baixa.
```py
import torch
import time
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
```
- Use um agendador mais rápido, como [`DPMSolverMultistepScheduler`], que requer apenas ~20-25 passos.
- Defina `num_inference_steps` para um valor menor. Reduzir o número de passos de inferência reduz o número total de computações. No entanto, isso pode resultar em menor qualidade de geração.
```py
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
start_time = time.perf_counter()
image = pipeline(prompt).images[0]
end_time = time.perf_counter()
print(f"Geração de imagem levou {end_time - start_time:.3f} segundos")
```
## Qualidade de geração
Muitos modelos de difusão modernos entregam imagens de alta qualidade imediatamente. No entanto, você ainda pode melhorar a qualidade de geração experimentando o seguinte.
- Experimente um prompt mais detalhado e descritivo. Inclua detalhes como o meio da imagem, assunto, estilo e estética. Um prompt negativo também pode ajudar, guiando um modelo para longe de características indesejáveis usando palavras como baixa qualidade ou desfocado.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
Para mais detalhes sobre como criar prompts melhores, consulte a documentação sobre [Técnicas de prompt](./using-diffusers/weighted_prompts).
- Experimente um agendador diferente, como [`HeunDiscreteScheduler`] ou [`LMSDiscreteScheduler`], que sacrifica velocidade de geração por qualidade.
```py
import torch
from diffusers import DiffusionPipeline, HeunDiscreteScheduler
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
## Próximos passos
Diffusers oferece otimizações mais avançadas e poderosas, como [group-offloading](./optimization/memory#group-offloading) e [compilação regional](./optimization/fp16#regional-compilation). Para saber mais sobre como maximizar o desempenho, consulte a seção sobre Otimização de Inferência.