mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
remove lora tests; todo in follow-up PR
This commit is contained in:
@@ -1,295 +0,0 @@
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
import pytest
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from diffusers import CogVideoXTransformer3DModel, DiffusionPipeline
|
||||
|
||||
|
||||
sys.path.append("..")
|
||||
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
logger = logging.getLogger()
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
dataset_name = "hf-internal-testing/tiny-video-dataset"
|
||||
instance_data_dir = "videos/"
|
||||
caption_column = "captions.txt"
|
||||
video_column = "videos.txt"
|
||||
instance_prompt = "A hiker standing at the peak of mountain"
|
||||
max_num_frames = 9
|
||||
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-cogvideox-pipe"
|
||||
script_path = "examples/cogvideo/train_cogvideox_lora.py"
|
||||
|
||||
dataset_path = None
|
||||
|
||||
@pytest.fixture(scope="class", autouse=True)
|
||||
def prepare_dummy_inputs(self, request):
|
||||
tmpdir = tempfile.mkdtemp()
|
||||
|
||||
try:
|
||||
if request.cls.dataset_path is None:
|
||||
request.cls.dataset_path = snapshot_download(self.dataset_name, repo_type="dataset", cache_dir=tmpdir)
|
||||
|
||||
yield
|
||||
finally:
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_lora(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--max_train_steps 2
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + test_args)
|
||||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
||||
|
||||
def test_lora_checkpointing(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
# Run training script with checkpointing
|
||||
# max_train_steps == 4, checkpointing_steps == 2
|
||||
# Should create checkpoints at steps 2, 4
|
||||
|
||||
initial_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
--seed 0
|
||||
--max_train_steps 4
|
||||
--checkpointing_steps 2
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + initial_run_args)
|
||||
|
||||
# check can run the original fully trained output pipeline
|
||||
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path)
|
||||
pipe.load_lora_weights(tmpdir)
|
||||
pipe(
|
||||
self.instance_prompt,
|
||||
num_inference_steps=1,
|
||||
num_frames=5,
|
||||
max_sequence_length=pipe.transformer.config.max_text_seq_length,
|
||||
)
|
||||
|
||||
# check checkpoint directories exist
|
||||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
|
||||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
|
||||
|
||||
# check can run an intermediate checkpoint
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
||||
self.pretrained_model_name_or_path, subfolder="transformer"
|
||||
)
|
||||
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer)
|
||||
pipe.load_lora_weights(os.path.join(tmpdir, "checkpoint-2"))
|
||||
pipe(
|
||||
self.instance_prompt,
|
||||
num_inference_steps=1,
|
||||
num_frames=5,
|
||||
max_sequence_length=pipe.transformer.config.max_text_seq_length,
|
||||
)
|
||||
|
||||
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
|
||||
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
|
||||
|
||||
# Run training script for 7 total steps resuming from checkpoint 4
|
||||
|
||||
resume_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
--seed=0
|
||||
--max_train_steps 6
|
||||
--checkpointing_steps 2
|
||||
--resume_from_checkpoint checkpoint-4
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + resume_run_args)
|
||||
|
||||
# check can run new fully trained pipeline
|
||||
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path)
|
||||
pipe(
|
||||
self.instance_prompt,
|
||||
num_inference_steps=1,
|
||||
num_frames=5,
|
||||
max_sequence_length=pipe.transformer.config.max_text_seq_length,
|
||||
)
|
||||
|
||||
# check old checkpoints do not exist
|
||||
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
|
||||
|
||||
# check new checkpoints exist
|
||||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
|
||||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))
|
||||
|
||||
def test_lora_checkpointing_checkpoints_total_limit(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
--max_train_steps 6
|
||||
--checkpointing_steps 2
|
||||
--checkpoints_total_limit 2
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + test_args)
|
||||
|
||||
self.assertEqual(
|
||||
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
||||
{"checkpoint-4", "checkpoint-6"},
|
||||
)
|
||||
|
||||
def test_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
--max_train_steps 4
|
||||
--checkpointing_steps=2
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + test_args)
|
||||
|
||||
self.assertEqual(
|
||||
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
||||
{"checkpoint-2", "checkpoint-4"},
|
||||
)
|
||||
|
||||
resume_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
--lora_alpha 1
|
||||
--mixed_precision fp16
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
--lr_scheduler constant
|
||||
--lr_warmup_steps 0
|
||||
--enable_tiling
|
||||
--output_dir {tmpdir}
|
||||
--max_train_steps 8
|
||||
--checkpointing_steps 2
|
||||
--resume_from_checkpoint checkpoint-4
|
||||
--checkpoints_total_limit 2
|
||||
""".split()
|
||||
|
||||
run_command(self._launch_args + resume_run_args)
|
||||
|
||||
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
|
||||
Reference in New Issue
Block a user