1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

remove lora tests; todo in follow-up PR

This commit is contained in:
Aryan
2024-09-18 01:32:07 +02:00
parent 14d2191804
commit f9f47ea153

View File

@@ -1,295 +0,0 @@
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import shutil
import sys
import tempfile
import pytest
from huggingface_hub import snapshot_download
from diffusers import CogVideoXTransformer3DModel, DiffusionPipeline
sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class CogVideoXLoRA(ExamplesTestsAccelerate):
dataset_name = "hf-internal-testing/tiny-video-dataset"
instance_data_dir = "videos/"
caption_column = "captions.txt"
video_column = "videos.txt"
instance_prompt = "A hiker standing at the peak of mountain"
max_num_frames = 9
pretrained_model_name_or_path = "hf-internal-testing/tiny-cogvideox-pipe"
script_path = "examples/cogvideo/train_cogvideox_lora.py"
dataset_path = None
@pytest.fixture(scope="class", autouse=True)
def prepare_dummy_inputs(self, request):
tmpdir = tempfile.mkdtemp()
try:
if request.cls.dataset_path is None:
request.cls.dataset_path = snapshot_download(self.dataset_name, repo_type="dataset", cache_dir=tmpdir)
yield
finally:
shutil.rmtree(tmpdir)
def test_lora(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
def test_lora_checkpointing(self):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
--seed 0
--max_train_steps 4
--checkpointing_steps 2
""".split()
run_command(self._launch_args + initial_run_args)
# check can run the original fully trained output pipeline
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path)
pipe.load_lora_weights(tmpdir)
pipe(
self.instance_prompt,
num_inference_steps=1,
num_frames=5,
max_sequence_length=pipe.transformer.config.max_text_seq_length,
)
# check checkpoint directories exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
# check can run an intermediate checkpoint
transformer = CogVideoXTransformer3DModel.from_pretrained(
self.pretrained_model_name_or_path, subfolder="transformer"
)
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer)
pipe.load_lora_weights(os.path.join(tmpdir, "checkpoint-2"))
pipe(
self.instance_prompt,
num_inference_steps=1,
num_frames=5,
max_sequence_length=pipe.transformer.config.max_text_seq_length,
)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
--seed=0
--max_train_steps 6
--checkpointing_steps 2
--resume_from_checkpoint checkpoint-4
""".split()
run_command(self._launch_args + resume_run_args)
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path)
pipe(
self.instance_prompt,
num_inference_steps=1,
num_frames=5,
max_sequence_length=pipe.transformer.config.max_text_seq_length,
)
# check old checkpoints do not exist
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
# check new checkpoints exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))
def test_lora_checkpointing_checkpoints_total_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
--max_train_steps 6
--checkpointing_steps 2
--checkpoints_total_limit 2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-6"},
)
def test_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
--max_train_steps 4
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
)
resume_run_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_root {self.dataset_path}
--caption_column {self.caption_column}
--video_column {self.video_column}
--rank 1
--lora_alpha 1
--mixed_precision fp16
--height 32
--width 32
--fps 8
--max_num_frames {self.max_num_frames}
--train_batch_size 1
--gradient_accumulation_steps 1
--learning_rate 1e-3
--lr_scheduler constant
--lr_warmup_steps 0
--enable_tiling
--output_dir {tmpdir}
--max_train_steps 8
--checkpointing_steps 2
--resume_from_checkpoint checkpoint-4
--checkpoints_total_limit 2
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})