1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Allow converting Flax to PyTorch by adding a "from_flax" keyword (#1900)

* from_flax

* oops

* oops

* make style with pip install -e ".[dev]"

* oops

* now code quality happy 😋

* allow_patterns += FLAX_WEIGHTS_NAME

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* for test

* bye bye is_flax_available()

* oops

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* make style

* add test

* finihs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
camenduru
2023-01-12 22:00:35 +03:00
committed by GitHub
parent 9147c4c954
commit f73ed17961
4 changed files with 345 additions and 79 deletions

View File

@@ -0,0 +1,156 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - Flax general utilities."""
from pickle import UnpicklingError
import numpy as np
import jax
import jax.numpy as jnp
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
logger = logging.get_logger(__name__)
#####################
# Flax => PyTorch #
#####################
# from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_flax_pytorch_utils.py#L224-L352
def load_flax_checkpoint_in_pytorch_model(pt_model, model_file):
try:
with open(model_file, "rb") as flax_state_f:
flax_state = from_bytes(None, flax_state_f.read())
except UnpicklingError as e:
try:
with open(model_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please"
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
" folder you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
return load_flax_weights_in_pytorch_model(pt_model, flax_state)
def load_flax_weights_in_pytorch_model(pt_model, flax_state):
"""Load flax checkpoints in a PyTorch model"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
# check if we have bf16 weights
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
if any(is_type_bf16):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model."
)
flax_state = jax.tree_util.tree_map(
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
)
pt_model.base_model_prefix = ""
flax_state_dict = flatten_dict(flax_state, sep=".")
pt_model_dict = pt_model.state_dict()
# keep track of unexpected & missing keys
unexpected_keys = []
missing_keys = set(pt_model_dict.keys())
for flax_key_tuple, flax_tensor in flax_state_dict.items():
flax_key_tuple_array = flax_key_tuple.split(".")
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
elif flax_key_tuple_array[-1] == "kernel":
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
flax_tensor = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(flax_key_tuple_array):
flax_key_tuple_array[i] = (
flax_key_tuple_string.replace("_0", ".0")
.replace("_1", ".1")
.replace("_2", ".2")
.replace("_3", ".3")
)
flax_key = ".".join(flax_key_tuple_array)
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
else:
# add weight to pytorch dict
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
# remove from missing keys
missing_keys.remove(flax_key)
else:
# weight is not expected by PyTorch model
unexpected_keys.append(flax_key)
pt_model.load_state_dict(pt_model_dict)
# re-transform missing_keys to list
missing_keys = list(missing_keys)
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)."
)
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
" use it for predictions and inference."
)
return pt_model

View File

@@ -30,6 +30,7 @@ from .. import __version__
from ..utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
FLAX_WEIGHTS_NAME,
HF_HUB_OFFLINE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
@@ -335,6 +336,8 @@ class ModelMixin(torch.nn.Module):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
from_flax (`bool`, *optional*, defaults to `False`):
Load the model weights from a Flax checkpoint save file.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo (either remote in
huggingface.co or downloaded locally), you can specify the folder name here.
@@ -375,6 +378,7 @@ class ModelMixin(torch.nn.Module):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
force_download = kwargs.pop("force_download", False)
from_flax = kwargs.pop("from_flax", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
@@ -433,27 +437,10 @@ class ModelMixin(torch.nn.Module):
# Load model
model_file = None
if is_safetensors_available():
try:
model_file = cls._get_model_file(
pretrained_model_name_or_path,
weights_name=SAFETENSORS_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
except:
pass
if model_file is None:
if from_flax:
model_file = cls._get_model_file(
pretrained_model_name_or_path,
weights_name=WEIGHTS_NAME,
weights_name=FLAX_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
@@ -464,49 +451,6 @@ class ModelMixin(torch.nn.Module):
subfolder=subfolder,
user_agent=user_agent,
)
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
**kwargs,
)
model = cls.from_config(config, **unused_kwargs)
# if device_map is Non,e load the state dict on move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file)
# move the parms from meta device to cpu
for param_name, param in state_dict.items():
accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
if accepts_dtype:
set_module_tensor_to_device(model, param_name, param_device, value=param, dtype=torch_dtype)
else:
set_module_tensor_to_device(model, param_name, param_device, value=param)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by deafult the device_map is None and the weights are loaded on the CPU
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map, dtype=torch_dtype)
loading_info = {
"missing_keys": [],
"unexpected_keys": [],
"mismatched_keys": [],
"error_msgs": [],
}
else:
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
@@ -523,22 +467,121 @@ class ModelMixin(torch.nn.Module):
)
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file)
# Convert the weights
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
model,
state_dict,
model_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
)
model = load_flax_checkpoint_in_pytorch_model(model, model_file)
else:
if is_safetensors_available():
try:
model_file = cls._get_model_file(
pretrained_model_name_or_path,
weights_name=SAFETENSORS_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
except:
pass
if model_file is None:
model_file = cls._get_model_file(
pretrained_model_name_or_path,
weights_name=WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
**kwargs,
)
model = cls.from_config(config, **unused_kwargs)
# if device_map is None, load the state dict and move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file)
# move the params from meta device to cpu
for param_name, param in state_dict.items():
accepts_dtype = "dtype" in set(
inspect.signature(set_module_tensor_to_device).parameters.keys()
)
if accepts_dtype:
set_module_tensor_to_device(
model, param_name, param_device, value=param, dtype=torch_dtype
)
else:
set_module_tensor_to_device(model, param_name, param_device, value=param)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by deafult the device_map is None and the weights are loaded on the CPU
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map, dtype=torch_dtype)
loading_info = {
"missing_keys": [],
"unexpected_keys": [],
"mismatched_keys": [],
"error_msgs": [],
}
else:
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
**kwargs,
)
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file)
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
model,
state_dict,
model_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
)
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
raise ValueError(

View File

@@ -37,6 +37,7 @@ from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
FLAX_WEIGHTS_NAME,
HF_HUB_OFFLINE,
ONNX_WEIGHTS_NAME,
WEIGHTS_NAME,
@@ -445,6 +446,7 @@ class DiffusionPipeline(ConfigMixin):
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_flax = kwargs.pop("from_flax", False)
torch_dtype = kwargs.pop("torch_dtype", None)
custom_pipeline = kwargs.pop("custom_pipeline", None)
custom_revision = kwargs.pop("custom_revision", None)
@@ -470,11 +472,26 @@ class DiffusionPipeline(ConfigMixin):
# make sure we only download sub-folders and `diffusers` filenames
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]
allow_patterns += [
WEIGHTS_NAME,
SCHEDULER_CONFIG_NAME,
CONFIG_NAME,
ONNX_WEIGHTS_NAME,
cls.config_name,
]
# make sure we don't download flax weights
ignore_patterns = ["*.msgpack"]
if from_flax:
ignore_patterns = ["*.bin", "*.safetensors"]
allow_patterns += [
SCHEDULER_CONFIG_NAME,
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
cls.config_name,
]
if custom_pipeline is not None:
allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]
@@ -704,7 +721,14 @@ class DiffusionPipeline(ConfigMixin):
# This makes sure that the weights won't be initialized which significantly speeds up loading.
if is_diffusers_model or is_transformers_model:
loading_kwargs["device_map"] = device_map
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
if from_flax:
loading_kwargs["from_flax"] = True
# if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
if not (from_flax and is_transformers_model):
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
else:
loading_kwargs["low_cpu_mem_usage"] = False
# check if the module is in a subdirectory
if os.path.isdir(os.path.join(cached_folder, name)):

View File

@@ -47,7 +47,7 @@ from diffusers import (
logging,
)
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, nightly, slow, torch_device
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, is_flax_available, nightly, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
from parameterized import parameterized
from PIL import Image
@@ -816,6 +816,49 @@ class PipelineSlowTests(unittest.TestCase):
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)
def test_from_flax_from_pt(self):
pipe_pt = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe_pt.to(torch_device)
if not is_flax_available():
raise ImportError("Make sure flax is installed.")
from diffusers import FlaxStableDiffusionPipeline
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_pt.save_pretrained(tmpdirname)
pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
tmpdirname, safety_checker=None, from_pt=True
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_flax.save_pretrained(tmpdirname, params=params)
pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
pipe_pt_2.to(torch_device)
prompt = "Hello"
generator = torch.manual_seed(0)
image_0 = pipe_pt(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
generator = torch.manual_seed(0)
image_1 = pipe_pt_2(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"
@nightly
@require_torch_gpu