mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add EDMEulerScheduler (#7109)
* Add EDMEulerScheduler * address review comments * fix import * fix test * add tests * add co-author Co-authored-by: @dg845 dgu8957@gmail.com
This commit is contained in:
@@ -144,6 +144,7 @@ else:
|
||||
"DPMSolverMultistepInverseScheduler",
|
||||
"DPMSolverMultistepScheduler",
|
||||
"DPMSolverSinglestepScheduler",
|
||||
"EDMEulerScheduler",
|
||||
"EulerAncestralDiscreteScheduler",
|
||||
"EulerDiscreteScheduler",
|
||||
"HeunDiscreteScheduler",
|
||||
@@ -526,6 +527,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
DPMSolverMultistepInverseScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
EDMEulerScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
|
||||
@@ -52,6 +52,7 @@ else:
|
||||
_import_structure["scheduling_dpmsolver_multistep"] = ["DPMSolverMultistepScheduler"]
|
||||
_import_structure["scheduling_dpmsolver_multistep_inverse"] = ["DPMSolverMultistepInverseScheduler"]
|
||||
_import_structure["scheduling_dpmsolver_singlestep"] = ["DPMSolverSinglestepScheduler"]
|
||||
_import_structure["scheduling_edm_euler"] = ["EDMEulerScheduler"]
|
||||
_import_structure["scheduling_euler_ancestral_discrete"] = ["EulerAncestralDiscreteScheduler"]
|
||||
_import_structure["scheduling_euler_discrete"] = ["EulerDiscreteScheduler"]
|
||||
_import_structure["scheduling_heun_discrete"] = ["HeunDiscreteScheduler"]
|
||||
@@ -144,6 +145,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
|
||||
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
|
||||
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
|
||||
from .scheduling_edm_euler import EDMEulerScheduler
|
||||
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
||||
from .scheduling_euler_discrete import EulerDiscreteScheduler
|
||||
from .scheduling_heun_discrete import HeunDiscreteScheduler
|
||||
|
||||
381
src/diffusers/schedulers/scheduling_edm_euler.py
Normal file
381
src/diffusers/schedulers/scheduling_edm_euler.py
Normal file
@@ -0,0 +1,381 @@
|
||||
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
|
||||
class EDMEulerSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
|
||||
Args:
|
||||
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
||||
`pred_original_sample` can be used to preview progress or for guidance.
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
pred_original_sample: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].
|
||||
|
||||
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
||||
https://arxiv.org/abs/2206.00364
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
sigma_min (`float`, *optional*, defaults to 0.002):
|
||||
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
|
||||
range is [0, 10].
|
||||
sigma_max (`float`, *optional*, defaults to 80.0):
|
||||
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
|
||||
range is [0.2, 80.0].
|
||||
sigma_data (`float`, *optional*, defaults to 0.5):
|
||||
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||||
rho (`float`, *optional*, defaults to 7.0):
|
||||
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sigma_min: float = 0.002,
|
||||
sigma_max: float = 80.0,
|
||||
sigma_data: float = 0.5,
|
||||
num_train_timesteps: int = 1000,
|
||||
prediction_type: str = "epsilon",
|
||||
rho: float = 7.0,
|
||||
):
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
|
||||
ramp = torch.linspace(0, 1, num_train_timesteps)
|
||||
sigmas = self._compute_sigmas(ramp)
|
||||
self.timesteps = self.precondition_noise(sigmas)
|
||||
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
self.is_scale_input_called = False
|
||||
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
# standard deviation of the initial noise distribution
|
||||
return (self.config.sigma_max**2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
"""
|
||||
The index counter for current timestep. It will increae 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
def precondition_inputs(self, sample, sigma):
|
||||
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
||||
scaled_sample = sample * c_in
|
||||
return scaled_sample
|
||||
|
||||
def precondition_noise(self, sigma):
|
||||
if not isinstance(sigma, torch.Tensor):
|
||||
sigma = torch.tensor([sigma])
|
||||
|
||||
c_noise = 0.25 * torch.log(sigma)
|
||||
|
||||
return c_noise
|
||||
|
||||
def precondition_outputs(self, sample, model_output, sigma):
|
||||
sigma_data = self.config.sigma_data
|
||||
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
||||
|
||||
if self.config.prediction_type == "epsilon":
|
||||
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||||
elif self.config.prediction_type == "v_prediction":
|
||||
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
||||
|
||||
denoised = c_skip * sample + c_out * model_output
|
||||
|
||||
return denoised
|
||||
|
||||
def scale_model_input(
|
||||
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
||||
) -> torch.FloatTensor:
|
||||
"""
|
||||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||||
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
||||
|
||||
Args:
|
||||
sample (`torch.FloatTensor`):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sample = self.precondition_inputs(sample, sigma)
|
||||
|
||||
self.is_scale_input_called = True
|
||||
return sample
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
ramp = np.linspace(0, 1, self.num_inference_steps)
|
||||
sigmas = self._compute_sigmas(ramp)
|
||||
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
self.timesteps = self.precondition_noise(sigmas)
|
||||
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
|
||||
def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
|
||||
sigma_min = sigma_min or self.config.sigma_min
|
||||
sigma_max = sigma_max or self.config.sigma_max
|
||||
|
||||
rho = self.config.rho
|
||||
min_inv_rho = sigma_min ** (1 / rho)
|
||||
max_inv_rho = sigma_max ** (1 / rho)
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
indices = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timestep: Union[float, torch.FloatTensor],
|
||||
sample: torch.FloatTensor,
|
||||
s_churn: float = 0.0,
|
||||
s_tmin: float = 0.0,
|
||||
s_tmax: float = float("inf"),
|
||||
s_noise: float = 1.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[EDMEulerSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
model_output (`torch.FloatTensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
s_churn (`float`):
|
||||
s_tmin (`float`):
|
||||
s_tmax (`float`):
|
||||
s_noise (`float`, defaults to 1.0):
|
||||
Scaling factor for noise added to the sample.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
|
||||
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
||||
"""
|
||||
|
||||
if (
|
||||
isinstance(timestep, int)
|
||||
or isinstance(timestep, torch.IntTensor)
|
||||
or isinstance(timestep, torch.LongTensor)
|
||||
):
|
||||
raise ValueError(
|
||||
(
|
||||
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||||
" `EDMEulerScheduler.step()` is not supported. Make sure to pass"
|
||||
" one of the `scheduler.timesteps` as a timestep."
|
||||
),
|
||||
)
|
||||
|
||||
if not self.is_scale_input_called:
|
||||
logger.warning(
|
||||
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
||||
"See `StableDiffusionPipeline` for a usage example."
|
||||
)
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
# Upcast to avoid precision issues when computing prev_sample
|
||||
sample = sample.to(torch.float32)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
|
||||
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
||||
|
||||
noise = randn_tensor(
|
||||
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
||||
)
|
||||
|
||||
eps = noise * s_noise
|
||||
sigma_hat = sigma * (gamma + 1)
|
||||
|
||||
if gamma > 0:
|
||||
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
||||
|
||||
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
||||
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
|
||||
|
||||
# 2. Convert to an ODE derivative
|
||||
derivative = (sample - pred_original_sample) / sigma_hat
|
||||
|
||||
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
||||
|
||||
prev_sample = sample + derivative * dt
|
||||
|
||||
# Cast sample back to model compatible dtype
|
||||
prev_sample = prev_sample.to(model_output.dtype)
|
||||
|
||||
# upon completion increase step index by one
|
||||
self._step_index += 1
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample,)
|
||||
|
||||
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: torch.FloatTensor,
|
||||
noise: torch.FloatTensor,
|
||||
timesteps: torch.FloatTensor,
|
||||
) -> torch.FloatTensor:
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
||||
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(original_samples.device)
|
||||
timesteps = timesteps.to(original_samples.device)
|
||||
|
||||
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
||||
else:
|
||||
step_indices = [self.begin_index] * timesteps.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(original_samples.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
noisy_samples = original_samples + noise * sigma
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
@@ -45,6 +45,7 @@ class KarrasDiffusionSchedulers(Enum):
|
||||
DEISMultistepScheduler = 12
|
||||
UniPCMultistepScheduler = 13
|
||||
DPMSolverSDEScheduler = 14
|
||||
EDMEulerScheduler = 15
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -855,6 +855,21 @@ class DPMSolverSinglestepScheduler(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class EDMEulerScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -209,6 +209,7 @@ class StableDiffusionLatentUpscalePipelineFastTests(
|
||||
"KDPM2DiscreteScheduler",
|
||||
"KDPM2AncestralDiscreteScheduler",
|
||||
"DPMSolverSDEScheduler",
|
||||
"EDMEulerScheduler",
|
||||
]
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
|
||||
206
tests/schedulers/test_scheduler_edm_euler.py
Normal file
206
tests/schedulers/test_scheduler_edm_euler.py
Normal file
@@ -0,0 +1,206 @@
|
||||
import inspect
|
||||
import tempfile
|
||||
import unittest
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import EDMEulerScheduler
|
||||
|
||||
from .test_schedulers import SchedulerCommonTest
|
||||
|
||||
|
||||
class EDMEulerSchedulerTest(SchedulerCommonTest):
|
||||
scheduler_classes = (EDMEulerScheduler,)
|
||||
forward_default_kwargs = (("num_inference_steps", 10),)
|
||||
|
||||
def get_scheduler_config(self, **kwargs):
|
||||
config = {
|
||||
"num_train_timesteps": 256,
|
||||
"sigma_min": 0.002,
|
||||
"sigma_max": 80.0,
|
||||
}
|
||||
|
||||
config.update(**kwargs)
|
||||
return config
|
||||
|
||||
def test_timesteps(self):
|
||||
for timesteps in [10, 50, 100, 1000]:
|
||||
self.check_over_configs(num_train_timesteps=timesteps)
|
||||
|
||||
def test_prediction_type(self):
|
||||
for prediction_type in ["epsilon", "v_prediction"]:
|
||||
self.check_over_configs(prediction_type=prediction_type)
|
||||
|
||||
def test_full_loop_no_noise(self, num_inference_steps=10, seed=0):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
||||
|
||||
for i, t in enumerate(scheduler.timesteps):
|
||||
scaled_sample = scheduler.scale_model_input(sample, t)
|
||||
|
||||
model_output = model(scaled_sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
assert abs(result_sum.item() - 34.1855) < 1e-3
|
||||
assert abs(result_mean.item() - 0.044) < 1e-3
|
||||
|
||||
def test_full_loop_device(self, num_inference_steps=10, seed=0):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
||||
|
||||
for i, t in enumerate(scheduler.timesteps):
|
||||
scaled_sample = scheduler.scale_model_input(sample, t)
|
||||
|
||||
model_output = model(scaled_sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
assert abs(result_sum.item() - 34.1855) < 1e-3
|
||||
assert abs(result_mean.item() - 0.044) < 1e-3
|
||||
|
||||
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
|
||||
def test_from_save_pretrained(self):
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
sample = self.dummy_sample
|
||||
residual = 0.1 * sample
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_config(tmpdirname)
|
||||
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
new_scheduler.set_timesteps(num_inference_steps)
|
||||
timestep = scheduler.timesteps[0]
|
||||
|
||||
sample = self.dummy_sample
|
||||
|
||||
scaled_sample = scheduler.scale_model_input(sample, timestep)
|
||||
residual = 0.1 * scaled_sample
|
||||
|
||||
new_scaled_sample = new_scheduler.scale_model_input(sample, timestep)
|
||||
new_residual = 0.1 * new_scaled_sample
|
||||
|
||||
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||
kwargs["generator"] = torch.manual_seed(0)
|
||||
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
|
||||
|
||||
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||
kwargs["generator"] = torch.manual_seed(0)
|
||||
new_output = new_scheduler.step(new_residual, timestep, sample, **kwargs).prev_sample
|
||||
|
||||
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
|
||||
|
||||
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
|
||||
def test_step_shape(self):
|
||||
num_inference_steps = 10
|
||||
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = self.scheduler_classes[0](**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
timestep_0 = scheduler.timesteps[0]
|
||||
timestep_1 = scheduler.timesteps[1]
|
||||
|
||||
sample = self.dummy_sample
|
||||
scaled_sample = scheduler.scale_model_input(sample, timestep_0)
|
||||
residual = 0.1 * scaled_sample
|
||||
|
||||
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample
|
||||
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample
|
||||
|
||||
self.assertEqual(output_0.shape, sample.shape)
|
||||
self.assertEqual(output_0.shape, output_1.shape)
|
||||
|
||||
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
|
||||
def test_scheduler_outputs_equivalence(self):
|
||||
def set_nan_tensor_to_zero(t):
|
||||
t[t != t] = 0
|
||||
return t
|
||||
|
||||
def recursive_check(tuple_object, dict_object):
|
||||
if isinstance(tuple_object, (List, Tuple)):
|
||||
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
|
||||
recursive_check(tuple_iterable_value, dict_iterable_value)
|
||||
elif isinstance(tuple_object, Dict):
|
||||
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
|
||||
recursive_check(tuple_iterable_value, dict_iterable_value)
|
||||
elif tuple_object is None:
|
||||
return
|
||||
else:
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
||||
),
|
||||
msg=(
|
||||
"Tuple and dict output are not equal. Difference:"
|
||||
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
||||
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
||||
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
||||
),
|
||||
)
|
||||
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
num_inference_steps = kwargs.pop("num_inference_steps", 50)
|
||||
|
||||
timestep = 0
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
timestep = scheduler.timesteps[0]
|
||||
|
||||
sample = self.dummy_sample
|
||||
scaled_sample = scheduler.scale_model_input(sample, timestep)
|
||||
residual = 0.1 * scaled_sample
|
||||
|
||||
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
||||
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||
kwargs["generator"] = torch.manual_seed(0)
|
||||
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
|
||||
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
scaled_sample = scheduler.scale_model_input(sample, timestep)
|
||||
residual = 0.1 * scaled_sample
|
||||
|
||||
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
||||
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||
kwargs["generator"] = torch.manual_seed(0)
|
||||
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
|
||||
|
||||
recursive_check(outputs_tuple, outputs_dict)
|
||||
|
||||
@unittest.skip(reason="EDMEulerScheduler does not support beta schedules.")
|
||||
def test_trained_betas(self):
|
||||
pass
|
||||
@@ -30,6 +30,7 @@ from diffusers import (
|
||||
DDIMScheduler,
|
||||
DEISMultistepScheduler,
|
||||
DiffusionPipeline,
|
||||
EDMEulerScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
IPNDMScheduler,
|
||||
@@ -385,6 +386,9 @@ class SchedulerCommonTest(unittest.TestCase):
|
||||
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
|
||||
time_step = scaled_sigma_max
|
||||
|
||||
if scheduler_class == EDMEulerScheduler:
|
||||
time_step = scheduler.timesteps[-1]
|
||||
|
||||
if scheduler_class == VQDiffusionScheduler:
|
||||
num_vec_classes = scheduler_config["num_vec_classes"]
|
||||
sample = self.dummy_sample(num_vec_classes)
|
||||
@@ -693,6 +697,8 @@ class SchedulerCommonTest(unittest.TestCase):
|
||||
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
|
||||
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
|
||||
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max)
|
||||
elif scheduler_class == EDMEulerScheduler:
|
||||
scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
|
||||
else:
|
||||
scaled_sample = scheduler.scale_model_input(sample, 0.0)
|
||||
self.assertEqual(sample.shape, scaled_sample.shape)
|
||||
@@ -710,6 +716,8 @@ class SchedulerCommonTest(unittest.TestCase):
|
||||
# Get valid timestep based on sigma_max, which should always be in timestep schedule.
|
||||
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
|
||||
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max)
|
||||
if scheduler_class == EDMEulerScheduler:
|
||||
scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
|
||||
else:
|
||||
scaled_sample = scheduler.scale_model_input(sample, 0.0)
|
||||
self.assertEqual(sample.shape, scaled_sample.shape)
|
||||
|
||||
Reference in New Issue
Block a user