1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

vq diffusion classifier free sampling (#1294)

* vq diffusion classifier free sampling

* correct

* uP

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
Will Berman
2022-11-16 08:51:43 -08:00
committed by GitHub
parent 09d0546ad0
commit f1fcfdeec5
4 changed files with 220 additions and 41 deletions

View File

@@ -39,8 +39,8 @@ import torch
import yaml
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from diffusers import VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.models.attention import Transformer2DModel
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from transformers import CLIPTextModel, CLIPTokenizer
from yaml.loader import FullLoader
@@ -826,6 +826,20 @@ if __name__ == "__main__":
transformer_model, checkpoint
)
# classifier free sampling embeddings interlude
# The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate
# model, so we pull them off the checkpoint before the checkpoint is deleted.
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf
if learnable_classifier_free_sampling_embeddings:
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"]
else:
learned_classifier_free_sampling_embeddings_embeddings = None
# done classifier free sampling embeddings interlude
with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file:
torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name)
del diffusers_transformer_checkpoint
@@ -871,6 +885,31 @@ if __name__ == "__main__":
# done scheduler
# learned classifier free sampling embeddings
with init_empty_weights():
learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings(
learnable_classifier_free_sampling_embeddings,
hidden_size=text_encoder_model.config.hidden_size,
length=tokenizer_model.model_max_length,
)
learned_classifier_free_sampling_checkpoint = {
"embeddings": learned_classifier_free_sampling_embeddings_embeddings.float()
}
with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file:
torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name)
del learned_classifier_free_sampling_checkpoint
del learned_classifier_free_sampling_embeddings_embeddings
load_checkpoint_and_dispatch(
learned_classifier_free_sampling_embeddings_model,
learned_classifier_free_sampling_checkpoint_file.name,
device_map="auto",
)
# done learned classifier free sampling embeddings
print(f"saving VQ diffusion model, path: {args.dump_path}")
pipe = VQDiffusionPipeline(
@@ -878,6 +917,7 @@ if __name__ == "__main__":
transformer=transformer_model,
tokenizer=tokenizer_model,
text_encoder=text_encoder_model,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model,
scheduler=scheduler_model,
)
pipe.save_pretrained(args.dump_path)

View File

@@ -1 +1,5 @@
from .pipeline_vq_diffusion import VQDiffusionPipeline
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline

View File

@@ -20,6 +20,8 @@ from diffusers import Transformer2DModel, VQModel
from diffusers.schedulers.scheduling_vq_diffusion import VQDiffusionScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...modeling_utils import ModelMixin
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...utils import logging
@@ -27,6 +29,28 @@ from ...utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin):
"""
Utility class for storing learned text embeddings for classifier free sampling
"""
@register_to_config
def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None):
super().__init__()
self.learnable = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
embeddings = torch.zeros(length, hidden_size)
else:
embeddings = None
self.embeddings = torch.nn.Parameter(embeddings)
class VQDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using VQ Diffusion
@@ -55,6 +79,7 @@ class VQDiffusionPipeline(DiffusionPipeline):
text_encoder: CLIPTextModel
tokenizer: CLIPTokenizer
transformer: Transformer2DModel
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings
scheduler: VQDiffusionScheduler
def __init__(
@@ -64,6 +89,7 @@ class VQDiffusionPipeline(DiffusionPipeline):
tokenizer: CLIPTokenizer,
transformer: Transformer2DModel,
scheduler: VQDiffusionScheduler,
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings,
):
super().__init__()
@@ -73,13 +99,78 @@ class VQDiffusionPipeline(DiffusionPipeline):
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
uncond_embeddings = self.learned_classifier_free_sampling_embeddings.embeddings
uncond_embeddings = uncond_embeddings.unsqueeze(0).repeat(batch_size, 1, 1)
else:
uncond_tokens = [""] * batch_size
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# See comment for normalizing text embeddings
uncond_embeddings = uncond_embeddings / uncond_embeddings.norm(dim=-1, keepdim=True)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 100,
guidance_scale: float = 5.0,
truncation_rate: float = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[torch.Generator] = None,
@@ -98,6 +189,12 @@ class VQDiffusionPipeline(DiffusionPipeline):
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
@@ -137,6 +234,10 @@ class VQDiffusionPipeline(DiffusionPipeline):
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
@@ -145,35 +246,6 @@ class VQDiffusionPipeline(DiffusionPipeline):
f" {type(callback_steps)}."
)
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
# get the initial completely masked latents unless the user supplied it
latents_shape = (batch_size, self.transformer.num_latent_pixels)
@@ -198,9 +270,19 @@ class VQDiffusionPipeline(DiffusionPipeline):
sample = latents
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the sample if we are doing classifier free guidance
latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
model_output = self.transformer(sample, encoder_hidden_states=text_embeddings, timestep=t).sample
model_output = self.transformer(
latent_model_input, encoder_hidden_states=text_embeddings, timestep=t
).sample
if do_classifier_free_guidance:
model_output_uncond, model_output_text = model_output.chunk(2)
model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(model_output, dim=1, keepdim=True)
model_output = self.truncate(model_output, truncation_rate)

View File

@@ -20,7 +20,8 @@ import numpy as np
import torch
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.utils import load_image, slow, torch_device
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
@@ -45,6 +46,10 @@ class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def num_embeds_ada_norm(self):
return 12
@property
def text_embedder_hidden_size(self):
return 32
@property
def dummy_vqvae(self):
torch.manual_seed(0)
@@ -71,7 +76,7 @@ class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
@@ -111,9 +116,15 @@ class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False)
pipe = VQDiffusionPipeline(
vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
@@ -139,6 +150,50 @@ class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_vq_diffusion_classifier_free_sampling(self):
device = "cpu"
vqvae = self.dummy_vqvae
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
transformer = self.dummy_transformer
scheduler = VQDiffusionScheduler(self.num_embed)
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(
learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length
)
pipe = VQDiffusionPipeline(
vqvae=vqvae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings,
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
prompt = "teddy bear playing in the pool"
generator = torch.Generator(device=device).manual_seed(0)
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = pipe(
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
@@ -149,12 +204,11 @@ class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def test_vq_diffusion(self):
expected_image = load_image(
def test_vq_diffusion_classifier_free_sampling(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool.png"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy"
)
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq")
pipeline = pipeline.to(torch_device)
@@ -163,7 +217,6 @@ class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipeline(
"teddy bear playing in the pool",
truncation_rate=0.86,
num_images_per_prompt=1,
generator=generator,
output_type="np",