1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Helper functions to return skip-layer compatible layers (#12048)

update

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
This commit is contained in:
Aryan
2025-08-06 23:25:16 +05:30
committed by GitHub
parent 69cdc25746
commit f19421e27c
2 changed files with 44 additions and 0 deletions

View File

@@ -133,6 +133,7 @@ def _register_attention_processors_metadata():
skip_processor_output_fn=_skip_proc_output_fn_Attention_WanAttnProcessor2_0,
),
)
# FluxAttnProcessor
AttentionProcessorRegistry.register(
model_class=FluxAttnProcessor,

View File

@@ -0,0 +1,43 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ._common import _ALL_TRANSFORMER_BLOCK_IDENTIFIERS, _ATTENTION_CLASSES, _FEEDFORWARD_CLASSES
def _get_identifiable_transformer_blocks_in_module(module: torch.nn.Module):
module_list_with_transformer_blocks = []
for name, submodule in module.named_modules():
name_endswith_identifier = any(name.endswith(identifier) for identifier in _ALL_TRANSFORMER_BLOCK_IDENTIFIERS)
is_modulelist = isinstance(submodule, torch.nn.ModuleList)
if name_endswith_identifier and is_modulelist:
module_list_with_transformer_blocks.append((name, submodule))
return module_list_with_transformer_blocks
def _get_identifiable_attention_layers_in_module(module: torch.nn.Module):
attention_layers = []
for name, submodule in module.named_modules():
if isinstance(submodule, _ATTENTION_CLASSES):
attention_layers.append((name, submodule))
return attention_layers
def _get_identifiable_feedforward_layers_in_module(module: torch.nn.Module):
feedforward_layers = []
for name, submodule in module.named_modules():
if isinstance(submodule, _FEEDFORWARD_CLASSES):
feedforward_layers.append((name, submodule))
return feedforward_layers