mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
style
This commit is contained in:
@@ -12,7 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
@@ -42,10 +41,10 @@ class ALDSchedulerOutput(BaseOutput):
|
||||
pred_original_sample: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
|
||||
class ALDScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
The Annealed Langevin Dynamics sampler was popularized in the paper on Noise Conditional Score Networks (NCSNs). For more details, refer to the paper https://arxiv.org/abs/1907.05600
|
||||
The Annealed Langevin Dynamics sampler was popularized in the paper on Noise Conditional Score Networks (NCSNs).
|
||||
For more details, refer to the paper https://arxiv.org/abs/1907.05600
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
@@ -96,9 +95,7 @@ class ALDScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self, num_inference_steps: int, device: Union[str, torch.device] = None
|
||||
):
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
@@ -114,9 +111,7 @@ class ALDScheduler(SchedulerMixin, ConfigMixin):
|
||||
)[::-1].copy()
|
||||
self.timesteps = torch.from_numpy(timesteps).to(device)
|
||||
|
||||
def set_sigmas(
|
||||
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None
|
||||
):
|
||||
def set_sigmas(self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None):
|
||||
"""
|
||||
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
@@ -137,8 +132,9 @@ class ALDScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.set_timesteps(num_inference_steps)
|
||||
|
||||
self.sigmas = torch.tensor(
|
||||
torch.exp(torch.linspace(torch.log(sigma_min), torch.log(sigma_max),
|
||||
num_inference_steps)), dtype=torch.float32)
|
||||
torch.exp(torch.linspace(torch.log(sigma_min), torch.log(sigma_max), num_inference_steps)),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
|
||||
self.final_noise_sigma = self.sigmas[-1]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user