mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
flow matching lcm scheduler (#11170)
* add flow matching lcm scheduler * stochastic sampling * upscaling for scale-wise generation * Apply style fixes * Apply suggestions from code review Co-authored-by: hlky <hlky@hlky.ac> --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: hlky <hlky@hlky.ac>
This commit is contained in:
committed by
GitHub
parent
0ef29355c9
commit
ec0b2b3947
561
src/diffusers/schedulers/scheduling_flow_match_lcm.py
Normal file
561
src/diffusers/schedulers/scheduling_flow_match_lcm.py
Normal file
@@ -0,0 +1,561 @@
|
||||
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, is_scipy_available, logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
if is_scipy_available():
|
||||
import scipy.stats
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowMatchLCMSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
|
||||
Args:
|
||||
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
|
||||
|
||||
class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
LCM scheduler for Flow Matching.
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
shift (`float`, defaults to 1.0):
|
||||
The shift value for the timestep schedule.
|
||||
use_dynamic_shifting (`bool`, defaults to False):
|
||||
Whether to apply timestep shifting on-the-fly based on the image resolution.
|
||||
base_shift (`float`, defaults to 0.5):
|
||||
Value to stabilize image generation. Increasing `base_shift` reduces variation and image is more consistent
|
||||
with desired output.
|
||||
max_shift (`float`, defaults to 1.15):
|
||||
Value change allowed to latent vectors. Increasing `max_shift` encourages more variation and image may be
|
||||
more exaggerated or stylized.
|
||||
base_image_seq_len (`int`, defaults to 256):
|
||||
The base image sequence length.
|
||||
max_image_seq_len (`int`, defaults to 4096):
|
||||
The maximum image sequence length.
|
||||
invert_sigmas (`bool`, defaults to False):
|
||||
Whether to invert the sigmas.
|
||||
shift_terminal (`float`, defaults to None):
|
||||
The end value of the shifted timestep schedule.
|
||||
use_karras_sigmas (`bool`, defaults to False):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during sampling.
|
||||
use_exponential_sigmas (`bool`, defaults to False):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during sampling.
|
||||
use_beta_sigmas (`bool`, defaults to False):
|
||||
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
|
||||
time_shift_type (`str`, defaults to "exponential"):
|
||||
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
|
||||
scale_factors ('list', defaults to None)
|
||||
It defines how to scale the latents at which predictions are made.
|
||||
upscale_mode ('str', defaults to 'bicubic')
|
||||
Upscaling method, applied if scale-wise generation is considered
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
shift: float = 1.0,
|
||||
use_dynamic_shifting: bool = False,
|
||||
base_shift: Optional[float] = 0.5,
|
||||
max_shift: Optional[float] = 1.15,
|
||||
base_image_seq_len: Optional[int] = 256,
|
||||
max_image_seq_len: Optional[int] = 4096,
|
||||
invert_sigmas: bool = False,
|
||||
shift_terminal: Optional[float] = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
use_beta_sigmas: Optional[bool] = False,
|
||||
time_shift_type: str = "exponential",
|
||||
scale_factors: Optional[List[float]] = None,
|
||||
upscale_mode: Optional[str] = "bicubic",
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
if time_shift_type not in {"exponential", "linear"}:
|
||||
raise ValueError("`time_shift_type` must either be 'exponential' or 'linear'.")
|
||||
|
||||
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
||||
|
||||
sigmas = timesteps / num_train_timesteps
|
||||
if not use_dynamic_shifting:
|
||||
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
||||
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
||||
|
||||
self.timesteps = sigmas * num_train_timesteps
|
||||
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
self._shift = shift
|
||||
|
||||
self._init_size = None
|
||||
self._scale_factors = scale_factors
|
||||
self._upscale_mode = upscale_mode
|
||||
|
||||
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
self.sigma_min = self.sigmas[-1].item()
|
||||
self.sigma_max = self.sigmas[0].item()
|
||||
|
||||
@property
|
||||
def shift(self):
|
||||
"""
|
||||
The value used for shifting.
|
||||
"""
|
||||
return self._shift
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
def set_shift(self, shift: float):
|
||||
self._shift = shift
|
||||
|
||||
def set_scale_factors(self, scale_factors: list, upscale_mode):
|
||||
"""
|
||||
Sets scale factors for a scale-wise generation regime.
|
||||
|
||||
Args:
|
||||
scale_factors (`list`):
|
||||
The scale factors for each step
|
||||
upscale_mode (`str`):
|
||||
Upscaling method
|
||||
"""
|
||||
self._scale_factors = scale_factors
|
||||
self._upscale_mode = upscale_mode
|
||||
|
||||
def scale_noise(
|
||||
self,
|
||||
sample: torch.FloatTensor,
|
||||
timestep: Union[float, torch.FloatTensor],
|
||||
noise: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
"""
|
||||
Forward process in flow-matching
|
||||
|
||||
Args:
|
||||
sample (`torch.FloatTensor`):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
|
||||
|
||||
if sample.device.type == "mps" and torch.is_floating_point(timestep):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
||||
timestep = timestep.to(sample.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(sample.device)
|
||||
timestep = timestep.to(sample.device)
|
||||
|
||||
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
|
||||
elif self.step_index is not None:
|
||||
# add_noise is called after first denoising step (for inpainting)
|
||||
step_indices = [self.step_index] * timestep.shape[0]
|
||||
else:
|
||||
# add noise is called before first denoising step to create initial latent(img2img)
|
||||
step_indices = [self.begin_index] * timestep.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(sample.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
sample = sigma * noise + (1.0 - sigma) * sample
|
||||
|
||||
return sample
|
||||
|
||||
def _sigma_to_t(self, sigma):
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
if self.config.time_shift_type == "exponential":
|
||||
return self._time_shift_exponential(mu, sigma, t)
|
||||
elif self.config.time_shift_type == "linear":
|
||||
return self._time_shift_linear(mu, sigma, t)
|
||||
|
||||
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
|
||||
value.
|
||||
|
||||
Reference:
|
||||
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
|
||||
|
||||
Args:
|
||||
t (`torch.Tensor`):
|
||||
A tensor of timesteps to be stretched and shifted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
|
||||
"""
|
||||
one_minus_z = 1 - t
|
||||
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
|
||||
stretched_t = 1 - (one_minus_z / scale_factor)
|
||||
return stretched_t
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[float] = None,
|
||||
timesteps: Optional[List[float]] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`, *optional*):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed
|
||||
automatically.
|
||||
mu (`float`, *optional*):
|
||||
Determines the amount of shifting applied to sigmas when performing resolution-dependent timestep
|
||||
shifting.
|
||||
timesteps (`List[float]`, *optional*):
|
||||
Custom values for timesteps to be used for each diffusion step. If `None`, the timesteps are computed
|
||||
automatically.
|
||||
"""
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`")
|
||||
|
||||
if sigmas is not None and timesteps is not None:
|
||||
if len(sigmas) != len(timesteps):
|
||||
raise ValueError("`sigmas` and `timesteps` should have the same length")
|
||||
|
||||
if num_inference_steps is not None:
|
||||
if (sigmas is not None and len(sigmas) != num_inference_steps) or (
|
||||
timesteps is not None and len(timesteps) != num_inference_steps
|
||||
):
|
||||
raise ValueError(
|
||||
"`sigmas` and `timesteps` should have the same length as num_inference_steps, if `num_inference_steps` is provided"
|
||||
)
|
||||
else:
|
||||
num_inference_steps = len(sigmas) if sigmas is not None else len(timesteps)
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
# 1. Prepare default sigmas
|
||||
is_timesteps_provided = timesteps is not None
|
||||
|
||||
if is_timesteps_provided:
|
||||
timesteps = np.array(timesteps).astype(np.float32)
|
||||
|
||||
if sigmas is None:
|
||||
if timesteps is None:
|
||||
timesteps = np.linspace(
|
||||
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
||||
)
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
else:
|
||||
sigmas = np.array(sigmas).astype(np.float32)
|
||||
num_inference_steps = len(sigmas)
|
||||
|
||||
# 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
|
||||
# "exponential" or "linear" type is applied
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
else:
|
||||
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
|
||||
|
||||
# 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
|
||||
if self.config.shift_terminal:
|
||||
sigmas = self.stretch_shift_to_terminal(sigmas)
|
||||
|
||||
# 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
elif self.config.use_beta_sigmas:
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
|
||||
# 5. Convert sigmas and timesteps to tensors and move to specified device
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
if not is_timesteps_provided:
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
else:
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
|
||||
|
||||
# 6. Append the terminal sigma value.
|
||||
# If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
|
||||
# `invert_sigmas` flag can be set to `True`. This case is only required in Mochi
|
||||
if self.config.invert_sigmas:
|
||||
sigmas = 1.0 - sigmas
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
|
||||
else:
|
||||
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
self.timesteps = timesteps
|
||||
self.sigmas = sigmas
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
indices = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
|
||||
def _init_step_index(self, timestep):
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timestep: Union[float, torch.FloatTensor],
|
||||
sample: torch.FloatTensor,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlowMatchLCMSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
model_output (`torch.FloatTensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] or
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] is
|
||||
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
||||
"""
|
||||
|
||||
if (
|
||||
isinstance(timestep, int)
|
||||
or isinstance(timestep, torch.IntTensor)
|
||||
or isinstance(timestep, torch.LongTensor)
|
||||
):
|
||||
raise ValueError(
|
||||
(
|
||||
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||||
" `FlowMatchLCMScheduler.step()` is not supported. Make sure to pass"
|
||||
" one of the `scheduler.timesteps` as a timestep."
|
||||
),
|
||||
)
|
||||
|
||||
if self._scale_factors and self._upscale_mode and len(self.timesteps) != len(self._scale_factors) + 1:
|
||||
raise ValueError(
|
||||
"`_scale_factors` should have the same length as `timesteps` - 1, if `_scale_factors` are set."
|
||||
)
|
||||
|
||||
if self._init_size is None or self.step_index is None:
|
||||
self._init_size = model_output.size()[2:]
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
# Upcast to avoid precision issues when computing prev_sample
|
||||
sample = sample.to(torch.float32)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sigma_next = self.sigmas[self.step_index + 1]
|
||||
x0_pred = sample - sigma * model_output
|
||||
|
||||
if self._scale_factors and self._upscale_mode:
|
||||
if self._step_index < len(self._scale_factors):
|
||||
size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
|
||||
x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)
|
||||
|
||||
noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
|
||||
prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise
|
||||
|
||||
# upon completion increase step index by one
|
||||
self._step_index += 1
|
||||
# Cast sample back to model compatible dtype
|
||||
prev_sample = prev_sample.to(model_output.dtype)
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample,)
|
||||
|
||||
return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
rho = 7.0 # 7.0 is the value used in the paper
|
||||
ramp = np.linspace(0, 1, num_inference_steps)
|
||||
min_inv_rho = sigma_min ** (1 / rho)
|
||||
max_inv_rho = sigma_max ** (1 / rho)
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
||||
def _convert_to_beta(
|
||||
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
||||
) -> torch.Tensor:
|
||||
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = np.array(
|
||||
[
|
||||
sigma_min + (ppf * (sigma_max - sigma_min))
|
||||
for ppf in [
|
||||
scipy.stats.beta.ppf(timestep, alpha, beta)
|
||||
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
||||
]
|
||||
]
|
||||
)
|
||||
return sigmas
|
||||
|
||||
def _time_shift_exponential(self, mu, sigma, t):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
def _time_shift_linear(self, mu, sigma, t):
|
||||
return mu / (mu + (1 / t - 1) ** sigma)
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
Reference in New Issue
Block a user