mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
resnet in one file
This commit is contained in:
@@ -1,3 +1,7 @@
|
||||
import string
|
||||
from abc import abstractmethod
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
@@ -54,6 +58,18 @@ def nonlinearity(x, swish=1.0):
|
||||
return x * F.sigmoid(x * float(swish))
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
@@ -134,154 +150,713 @@ class Downsample(nn.Module):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class UNetUpsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class GlideUpsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
|
||||
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class LDMUpsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param
|
||||
use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class GradTTSUpsample(torch.nn.Module):
|
||||
def __init__(self, dim):
|
||||
super(Upsample, self).__init__()
|
||||
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
# class UNetUpsample(nn.Module):
|
||||
# def __init__(self, in_channels, with_conv):
|
||||
# super().__init__()
|
||||
# self.with_conv = with_conv
|
||||
# if self.with_conv:
|
||||
# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
# if self.with_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class GlideUpsample(nn.Module):
|
||||
# """
|
||||
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param
|
||||
use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
|
||||
3D, then # upsampling occurs in the inner-two dimensions. #"""
|
||||
#
|
||||
# def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.dims = dims
|
||||
# if use_conv:
|
||||
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# assert x.shape[1] == self.channels
|
||||
# if self.dims == 3:
|
||||
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
# else:
|
||||
# x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
# if self.use_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class LDMUpsample(nn.Module):
|
||||
# """
|
||||
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param #
|
||||
use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
|
||||
3D, then # upsampling occurs in the inner-two dimensions. #"""
|
||||
#
|
||||
# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.dims = dims
|
||||
# if use_conv:
|
||||
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# assert x.shape[1] == self.channels
|
||||
# if self.dims == 3:
|
||||
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
# else:
|
||||
# x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
# if self.use_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class GradTTSUpsample(torch.nn.Module):
|
||||
# def __init__(self, dim):
|
||||
# super(Upsample, self).__init__()
|
||||
# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# return self.conv(x)
|
||||
#
|
||||
#
|
||||
# TODO (patil-suraj): needs test
|
||||
class Upsample1d(nn.Module):
|
||||
def __init__(self, dim):
|
||||
# class Upsample1d(nn.Module):
|
||||
# def __init__(self, dim):
|
||||
# super().__init__()
|
||||
# self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# return self.conv(x)
|
||||
|
||||
|
||||
# RESNETS
|
||||
|
||||
# unet_glide.py & unet_ldm.py
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
|
||||
:param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
|
||||
use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
|
||||
on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
|
||||
downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels, swish=1.0),
|
||||
nn.Identity(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
|
||||
nn.SiLU() if use_scale_shift_norm else nn.Identity(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
# unet.py
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
# unet_grad_tts.py
|
||||
class ResnetBlockGradTTS(torch.nn.Module):
|
||||
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
||||
super(ResnetBlockGradTTS, self).__init__()
|
||||
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
||||
|
||||
self.block1 = Block(dim, dim_out, groups=groups)
|
||||
self.block2 = Block(dim_out, dim_out, groups=groups)
|
||||
if dim != dim_out:
|
||||
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
|
||||
else:
|
||||
self.res_conv = torch.nn.Identity()
|
||||
|
||||
def forward(self, x, mask, time_emb):
|
||||
h = self.block1(x, mask)
|
||||
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
|
||||
h = self.block2(h, mask)
|
||||
output = h + self.res_conv(x * mask)
|
||||
return output
|
||||
|
||||
|
||||
# unet_rl.py
|
||||
class ResidualTemporalBlock(nn.Module):
|
||||
def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
|
||||
super().__init__()
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Conv1dBlock(inp_channels, out_channels, kernel_size),
|
||||
Conv1dBlock(out_channels, out_channels, kernel_size),
|
||||
]
|
||||
)
|
||||
|
||||
self.time_mlp = nn.Sequential(
|
||||
nn.Mish(),
|
||||
nn.Linear(embed_dim, out_channels),
|
||||
RearrangeDim(),
|
||||
# Rearrange("batch t -> batch t 1"),
|
||||
)
|
||||
|
||||
self.residual_conv = (
|
||||
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x, t):
|
||||
"""
|
||||
x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
|
||||
out_channels x horizon ]
|
||||
"""
|
||||
out = self.blocks[0](x) + self.time_mlp(t)
|
||||
out = self.blocks[1](out)
|
||||
return out + self.residual_conv(x)
|
||||
|
||||
|
||||
# unet_score_estimation.py
|
||||
class ResnetBlockBigGANpp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
act,
|
||||
in_ch,
|
||||
out_ch=None,
|
||||
temb_dim=None,
|
||||
up=False,
|
||||
down=False,
|
||||
dropout=0.1,
|
||||
fir=False,
|
||||
fir_kernel=(1, 3, 3, 1),
|
||||
skip_rescale=True,
|
||||
init_scale=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
out_ch = out_ch if out_ch else in_ch
|
||||
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
self.up = up
|
||||
self.down = down
|
||||
self.fir = fir
|
||||
self.fir_kernel = fir_kernel
|
||||
|
||||
self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
if temb_dim is not None:
|
||||
self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
|
||||
nn.init.zeros_(self.Dense_0.bias)
|
||||
|
||||
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
self.Dropout_0 = nn.Dropout(dropout)
|
||||
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
if in_ch != out_ch or up or down:
|
||||
self.Conv_2 = conv1x1(in_ch, out_ch)
|
||||
|
||||
self.skip_rescale = skip_rescale
|
||||
self.act = act
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
|
||||
def forward(self, x, temb=None):
|
||||
h = self.act(self.GroupNorm_0(x))
|
||||
|
||||
if self.up:
|
||||
if self.fir:
|
||||
h = upsample_2d(h, self.fir_kernel, factor=2)
|
||||
x = upsample_2d(x, self.fir_kernel, factor=2)
|
||||
else:
|
||||
h = naive_upsample_2d(h, factor=2)
|
||||
x = naive_upsample_2d(x, factor=2)
|
||||
elif self.down:
|
||||
if self.fir:
|
||||
h = downsample_2d(h, self.fir_kernel, factor=2)
|
||||
x = downsample_2d(x, self.fir_kernel, factor=2)
|
||||
else:
|
||||
h = naive_downsample_2d(h, factor=2)
|
||||
x = naive_downsample_2d(x, factor=2)
|
||||
|
||||
h = self.Conv_0(h)
|
||||
# Add bias to each feature map conditioned on the time embedding
|
||||
if temb is not None:
|
||||
h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
h = self.act(self.GroupNorm_1(h))
|
||||
h = self.Dropout_0(h)
|
||||
h = self.Conv_1(h)
|
||||
|
||||
if self.in_ch != self.out_ch or self.up or self.down:
|
||||
x = self.Conv_2(x)
|
||||
|
||||
if not self.skip_rescale:
|
||||
return x + h
|
||||
else:
|
||||
return (x + h) / np.sqrt(2.0)
|
||||
|
||||
|
||||
# unet_score_estimation.py
|
||||
class ResnetBlockDDPMpp(nn.Module):
|
||||
"""ResBlock adapted from DDPM."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
act,
|
||||
in_ch,
|
||||
out_ch=None,
|
||||
temb_dim=None,
|
||||
conv_shortcut=False,
|
||||
dropout=0.1,
|
||||
skip_rescale=False,
|
||||
init_scale=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
out_ch = out_ch if out_ch else in_ch
|
||||
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
if temb_dim is not None:
|
||||
self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
|
||||
nn.init.zeros_(self.Dense_0.bias)
|
||||
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
self.Dropout_0 = nn.Dropout(dropout)
|
||||
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
if in_ch != out_ch:
|
||||
if conv_shortcut:
|
||||
self.Conv_2 = conv3x3(in_ch, out_ch)
|
||||
else:
|
||||
self.NIN_0 = NIN(in_ch, out_ch)
|
||||
|
||||
self.skip_rescale = skip_rescale
|
||||
self.act = act
|
||||
self.out_ch = out_ch
|
||||
self.conv_shortcut = conv_shortcut
|
||||
|
||||
def forward(self, x, temb=None):
|
||||
h = self.act(self.GroupNorm_0(x))
|
||||
h = self.Conv_0(h)
|
||||
if temb is not None:
|
||||
h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
h = self.act(self.GroupNorm_1(h))
|
||||
h = self.Dropout_0(h)
|
||||
h = self.Conv_1(h)
|
||||
if x.shape[1] != self.out_ch:
|
||||
if self.conv_shortcut:
|
||||
x = self.Conv_2(x)
|
||||
else:
|
||||
x = self.NIN_0(x)
|
||||
if not self.skip_rescale:
|
||||
return x + h
|
||||
else:
|
||||
return (x + h) / np.sqrt(2.0)
|
||||
|
||||
|
||||
# HELPER Modules
|
||||
|
||||
|
||||
def normalization(channels, swish=0.0):
|
||||
"""
|
||||
Make a standard normalization layer, with an optional swish activation.
|
||||
|
||||
:param channels: number of input channels. :return: an nn.Module for normalization.
|
||||
"""
|
||||
return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def __init__(self, num_groups, num_channels, swish, eps=1e-5):
|
||||
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
|
||||
self.swish = swish
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
y = super().forward(x.float()).to(x.dtype)
|
||||
if self.swish == 1.0:
|
||||
y = F.silu(y)
|
||||
elif self.swish:
|
||||
y = y * F.sigmoid(y * float(self.swish))
|
||||
return y
|
||||
|
||||
|
||||
# class ResnetBlock(nn.Module):
|
||||
# def __init__(
|
||||
# self,
|
||||
# *,
|
||||
# in_channels,
|
||||
# out_channels=None,
|
||||
# conv_shortcut=False,
|
||||
# dropout,
|
||||
# temb_channels=512,
|
||||
# use_scale_shift_norm=False,
|
||||
# ):
|
||||
# super().__init__()
|
||||
# self.in_channels = in_channels
|
||||
# out_channels = in_channels if out_channels is None else out_channels
|
||||
# self.out_channels = out_channels
|
||||
# self.use_conv_shortcut = conv_shortcut
|
||||
# self.use_scale_shift_norm = use_scale_shift_norm
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
# self.norm1 = Normalize(in_channels)
|
||||
# self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# temp_out_channles = 2 * out_channels if use_scale_shift_norm else out_channels
|
||||
# self.temb_proj = torch.nn.Linear(temb_channels, temp_out_channles)
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
# self.norm2 = Normalize(out_channels)
|
||||
# self.dropout = torch.nn.Dropout(dropout)
|
||||
# self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# else:
|
||||
# self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
# def forward(self, x, temb):
|
||||
# h = x
|
||||
# h = self.norm1(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.conv1(h)
|
||||
class Mish(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return x * torch.tanh(torch.nn.functional.softplus(x))
|
||||
|
||||
# # TODO: check if this broadcasting works correctly for 1D and 3D
|
||||
# temb = self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
# if self.use_scale_shift_norm:
|
||||
# out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
# scale, shift = torch.chunk(temb, 2, dim=1)
|
||||
# h = self.norm2(h) * (1 + scale) + shift
|
||||
# h = out_rest(h)
|
||||
# else:
|
||||
# h = h + temb
|
||||
# h = self.norm2(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.dropout(h)
|
||||
# h = self.conv2(h)
|
||||
class Block(torch.nn.Module):
|
||||
def __init__(self, dim, dim_out, groups=8):
|
||||
super(Block, self).__init__()
|
||||
self.block = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
|
||||
)
|
||||
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# x = self.conv_shortcut(x)
|
||||
# else:
|
||||
# x = self.nin_shortcut(x)
|
||||
def forward(self, x, mask):
|
||||
output = self.block(x * mask)
|
||||
return output * mask
|
||||
|
||||
# return x + h
|
||||
|
||||
class Conv1dBlock(nn.Module):
|
||||
"""
|
||||
Conv1d --> GroupNorm --> Mish
|
||||
"""
|
||||
|
||||
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
|
||||
super().__init__()
|
||||
|
||||
self.block = nn.Sequential(
|
||||
nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
|
||||
RearrangeDim(),
|
||||
# Rearrange("batch channels horizon -> batch channels 1 horizon"),
|
||||
nn.GroupNorm(n_groups, out_channels),
|
||||
RearrangeDim(),
|
||||
# Rearrange("batch channels 1 horizon -> batch channels horizon"),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
|
||||
class RearrangeDim(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, tensor):
|
||||
if len(tensor.shape) == 2:
|
||||
return tensor[:, :, None]
|
||||
if len(tensor.shape) == 3:
|
||||
return tensor[:, :, None, :]
|
||||
elif len(tensor.shape) == 4:
|
||||
return tensor[:, :, 0, :]
|
||||
else:
|
||||
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0):
|
||||
"""1x1 convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
|
||||
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
|
||||
nn.init.zeros_(conv.bias)
|
||||
return conv
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1):
|
||||
"""3x3 convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias
|
||||
)
|
||||
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
|
||||
nn.init.zeros_(conv.bias)
|
||||
return conv
|
||||
|
||||
|
||||
def default_init(scale=1.0):
|
||||
"""The same initialization used in DDPM."""
|
||||
scale = 1e-10 if scale == 0 else scale
|
||||
return variance_scaling(scale, "fan_avg", "uniform")
|
||||
|
||||
|
||||
def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
|
||||
"""Ported from JAX."""
|
||||
|
||||
def _compute_fans(shape, in_axis=1, out_axis=0):
|
||||
receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
|
||||
fan_in = shape[in_axis] * receptive_field_size
|
||||
fan_out = shape[out_axis] * receptive_field_size
|
||||
return fan_in, fan_out
|
||||
|
||||
def init(shape, dtype=dtype, device=device):
|
||||
fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
|
||||
if mode == "fan_in":
|
||||
denominator = fan_in
|
||||
elif mode == "fan_out":
|
||||
denominator = fan_out
|
||||
elif mode == "fan_avg":
|
||||
denominator = (fan_in + fan_out) / 2
|
||||
else:
|
||||
raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
|
||||
variance = scale / denominator
|
||||
if distribution == "normal":
|
||||
return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
|
||||
elif distribution == "uniform":
|
||||
return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
|
||||
else:
|
||||
raise ValueError("invalid distribution for variance scaling initializer")
|
||||
|
||||
return init
|
||||
|
||||
|
||||
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
||||
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
||||
|
||||
|
||||
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
||||
_, channel, in_h, in_w = input.shape
|
||||
input = input.reshape(-1, in_h, in_w, 1)
|
||||
|
||||
_, in_h, in_w, minor = input.shape
|
||||
kernel_h, kernel_w = kernel.shape
|
||||
|
||||
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
||||
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
||||
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
||||
|
||||
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
||||
out = out[
|
||||
:,
|
||||
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
||||
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
||||
:,
|
||||
]
|
||||
|
||||
out = out.permute(0, 3, 1, 2)
|
||||
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
||||
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
||||
out = F.conv2d(out, w)
|
||||
out = out.reshape(
|
||||
-1,
|
||||
minor,
|
||||
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
||||
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
||||
)
|
||||
out = out.permute(0, 2, 3, 1)
|
||||
out = out[:, ::down_y, ::down_x, :]
|
||||
|
||||
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
||||
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
||||
|
||||
return out.view(-1, channel, out_h, out_w)
|
||||
|
||||
|
||||
def upsample_2d(x, k=None, factor=2, gain=1):
|
||||
r"""Upsample a batch of 2D images with the given filter.
|
||||
|
||||
Args:
|
||||
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
||||
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
||||
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
|
||||
multiple of the upsampling factor.
|
||||
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
|
||||
C]`.
|
||||
k: FIR filter of the shape `[firH, firW]` or `[firN]`
|
||||
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
||||
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
|
||||
|
||||
Returns:
|
||||
Tensor of the shape `[N, C, H * factor, W * factor]`
|
||||
"""
|
||||
assert isinstance(factor, int) and factor >= 1
|
||||
if k is None:
|
||||
k = [1] * factor
|
||||
k = _setup_kernel(k) * (gain * (factor**2))
|
||||
p = k.shape[0] - factor
|
||||
return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))
|
||||
|
||||
|
||||
def downsample_2d(x, k=None, factor=2, gain=1):
|
||||
r"""Downsample a batch of 2D images with the given filter.
|
||||
|
||||
Args:
|
||||
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
||||
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
||||
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
||||
shape is a multiple of the downsampling factor.
|
||||
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
|
||||
C]`.
|
||||
k: FIR filter of the shape `[firH, firW]` or `[firN]`
|
||||
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
||||
factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
|
||||
|
||||
Returns:
|
||||
Tensor of the shape `[N, C, H // factor, W // factor]`
|
||||
"""
|
||||
|
||||
assert isinstance(factor, int) and factor >= 1
|
||||
if k is None:
|
||||
k = [1] * factor
|
||||
k = _setup_kernel(k) * gain
|
||||
p = k.shape[0] - factor
|
||||
return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
|
||||
|
||||
|
||||
def naive_upsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H, 1, W, 1))
|
||||
x = x.repeat(1, 1, 1, factor, 1, factor)
|
||||
return torch.reshape(x, (-1, C, H * factor, W * factor))
|
||||
|
||||
|
||||
def naive_downsample_2d(x, factor=2):
|
||||
_N, C, H, W = x.shape
|
||||
x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
|
||||
return torch.mean(x, dim=(3, 5))
|
||||
|
||||
|
||||
class NIN(nn.Module):
|
||||
def __init__(self, in_dim, num_units, init_scale=0.1):
|
||||
super().__init__()
|
||||
self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
|
||||
self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
y = contract_inner(x, self.W) + self.b
|
||||
return y.permute(0, 3, 1, 2)
|
||||
|
||||
|
||||
def _setup_kernel(k):
|
||||
k = np.asarray(k, dtype=np.float32)
|
||||
if k.ndim == 1:
|
||||
k = np.outer(k, k)
|
||||
k /= np.sum(k)
|
||||
assert k.ndim == 2
|
||||
assert k.shape[0] == k.shape[1]
|
||||
return k
|
||||
|
||||
|
||||
def contract_inner(x, y):
|
||||
"""tensordot(x, y, 1)."""
|
||||
x_chars = list(string.ascii_lowercase[: len(x.shape)])
|
||||
y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)])
|
||||
y_chars[0] = x_chars[-1] # first axis of y and last of x get summed
|
||||
out_chars = x_chars[:-1] + y_chars[1:]
|
||||
return _einsum(x_chars, y_chars, out_chars, x, y)
|
||||
|
||||
|
||||
def _einsum(a, b, c, x, y):
|
||||
einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c))
|
||||
return torch.einsum(einsum_str, x, y)
|
||||
|
||||
@@ -22,7 +22,7 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .attention import AttentionBlock
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Downsample, Upsample
|
||||
from .resnet import Downsample, ResnetBlock, Upsample
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
@@ -34,46 +34,46 @@ def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
# class ResnetBlock(nn.Module):
|
||||
# def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
# super().__init__()
|
||||
# self.in_channels = in_channels
|
||||
# out_channels = in_channels if out_channels is None else out_channels
|
||||
# self.out_channels = out_channels
|
||||
# self.use_conv_shortcut = conv_shortcut
|
||||
#
|
||||
# self.norm1 = Normalize(in_channels)
|
||||
# self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
# self.norm2 = Normalize(out_channels)
|
||||
# self.dropout = torch.nn.Dropout(dropout)
|
||||
# self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# else:
|
||||
# self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
#
|
||||
# def forward(self, x, temb):
|
||||
# h = x
|
||||
# h = self.norm1(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.conv1(h)
|
||||
#
|
||||
# h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
#
|
||||
# h = self.norm2(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.dropout(h)
|
||||
# h = self.conv2(h)
|
||||
#
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# x = self.conv_shortcut(x)
|
||||
# else:
|
||||
# x = self.nin_shortcut(x)
|
||||
#
|
||||
# return x + h
|
||||
|
||||
|
||||
class UNetModel(ModelMixin, ConfigMixin):
|
||||
@@ -127,7 +127,6 @@ class UNetModel(ModelMixin, ConfigMixin):
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
attn_2 = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
@@ -142,7 +141,6 @@ class UNetModel(ModelMixin, ConfigMixin):
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
down.attn_2 = attn_2
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0)
|
||||
curr_res = curr_res // 2
|
||||
|
||||
@@ -8,7 +8,7 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .attention import AttentionBlock
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Downsample, Upsample
|
||||
from .resnet import Downsample, ResBlock, TimestepBlock, Upsample
|
||||
|
||||
|
||||
def convert_module_to_f16(l):
|
||||
@@ -96,16 +96,14 @@ def zero_module(module):
|
||||
return module
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
# class TimestepBlock(nn.Module):
|
||||
# """
|
||||
# Any module where forward() takes timestep embeddings as a second argument. #"""
|
||||
#
|
||||
# @abstractmethod
|
||||
# def forward(self, x, emb):
|
||||
# """
|
||||
# Apply the module to `x` given `emb` timestep embeddings. #"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
@@ -124,106 +122,99 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
return x
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
|
||||
:param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
|
||||
use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
|
||||
on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
|
||||
downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels, swish=1.0),
|
||||
nn.Identity(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
|
||||
nn.SiLU() if use_scale_shift_norm else nn.Identity(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
# class ResBlock(TimestepBlock):
|
||||
# """
|
||||
# A residual block that can optionally change the number of channels. # # :param channels: the number of input
|
||||
channels. :param emb_channels: the number of timestep embedding channels. # :param dropout: the rate of dropout. :param
|
||||
out_channels: if specified, the number of out channels. :param # use_conv: if True and out_channels is specified, use a
|
||||
spatial # convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. # :param
|
||||
dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing # on this
|
||||
module. :param up: if True, use this block for upsampling. :param down: if True, use this block for # downsampling. #"""
|
||||
#
|
||||
# def __init__(
|
||||
# self,
|
||||
# channels,
|
||||
# emb_channels,
|
||||
# dropout,
|
||||
# out_channels=None,
|
||||
# use_conv=False,
|
||||
# use_scale_shift_norm=False,
|
||||
# dims=2,
|
||||
# use_checkpoint=False,
|
||||
# up=False,
|
||||
# down=False,
|
||||
# ):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.emb_channels = emb_channels
|
||||
# self.dropout = dropout
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.use_checkpoint = use_checkpoint
|
||||
# self.use_scale_shift_norm = use_scale_shift_norm
|
||||
#
|
||||
# self.in_layers = nn.Sequential(
|
||||
# normalization(channels, swish=1.0),
|
||||
# nn.Identity(),
|
||||
# conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
# )
|
||||
#
|
||||
# self.updown = up or down
|
||||
#
|
||||
# if up:
|
||||
# self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
# self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
# elif down:
|
||||
# self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
# self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
# else:
|
||||
# self.h_upd = self.x_upd = nn.Identity()
|
||||
#
|
||||
# self.emb_layers = nn.Sequential(
|
||||
# nn.SiLU(),
|
||||
# linear(
|
||||
# emb_channels,
|
||||
# 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
# ),
|
||||
# )
|
||||
# self.out_layers = nn.Sequential(
|
||||
# normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
|
||||
# nn.SiLU() if use_scale_shift_norm else nn.Identity(),
|
||||
# nn.Dropout(p=dropout),
|
||||
# zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
# )
|
||||
#
|
||||
# if self.out_channels == channels:
|
||||
# self.skip_connection = nn.Identity()
|
||||
# elif use_conv:
|
||||
# self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
# else:
|
||||
# self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
#
|
||||
# def forward(self, x, emb):
|
||||
# """
|
||||
# Apply the block to a Tensor, conditioned on a timestep embedding. # # :param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings. # :return: an [N x C x ...] Tensor of outputs. #"""
|
||||
# if self.updown:
|
||||
# in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
# h = in_rest(x)
|
||||
# h = self.h_upd(h)
|
||||
# x = self.x_upd(x)
|
||||
# h = in_conv(h)
|
||||
# else:
|
||||
# h = self.in_layers(x)
|
||||
# emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
# while len(emb_out.shape) < len(h.shape):
|
||||
# emb_out = emb_out[..., None]
|
||||
# if self.use_scale_shift_norm:
|
||||
# out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
# scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
# h = out_norm(h) * (1 + scale) + shift
|
||||
# h = out_rest(h)
|
||||
# else:
|
||||
# h = h + emb_out
|
||||
# h = self.out_layers(h)
|
||||
# return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class GlideUNetModel(ModelMixin, ConfigMixin):
|
||||
|
||||
@@ -4,7 +4,9 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .attention import LinearAttention
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Downsample, Upsample
|
||||
from .resnet import Downsample
|
||||
from .resnet import ResnetBlockGradTTS as ResnetBlock
|
||||
from .resnet import Upsample
|
||||
|
||||
|
||||
class Mish(torch.nn.Module):
|
||||
@@ -34,24 +36,24 @@ class Block(torch.nn.Module):
|
||||
return output * mask
|
||||
|
||||
|
||||
class ResnetBlock(torch.nn.Module):
|
||||
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
||||
super(ResnetBlock, self).__init__()
|
||||
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
||||
|
||||
self.block1 = Block(dim, dim_out, groups=groups)
|
||||
self.block2 = Block(dim_out, dim_out, groups=groups)
|
||||
if dim != dim_out:
|
||||
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
|
||||
else:
|
||||
self.res_conv = torch.nn.Identity()
|
||||
|
||||
def forward(self, x, mask, time_emb):
|
||||
h = self.block1(x, mask)
|
||||
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
|
||||
h = self.block2(h, mask)
|
||||
output = h + self.res_conv(x * mask)
|
||||
return output
|
||||
# class ResnetBlock(torch.nn.Module):
|
||||
# def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
||||
# super(ResnetBlock, self).__init__()
|
||||
# self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
||||
#
|
||||
# self.block1 = Block(dim, dim_out, groups=groups)
|
||||
# self.block2 = Block(dim_out, dim_out, groups=groups)
|
||||
# if dim != dim_out:
|
||||
# self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
|
||||
# else:
|
||||
# self.res_conv = torch.nn.Identity()
|
||||
#
|
||||
# def forward(self, x, mask, time_emb):
|
||||
# h = self.block1(x, mask)
|
||||
# h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
|
||||
# h = self.block2(h, mask)
|
||||
# output = h + self.res_conv(x * mask)
|
||||
# return output
|
||||
|
||||
|
||||
class Residual(torch.nn.Module):
|
||||
|
||||
@@ -11,7 +11,7 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .attention import AttentionBlock
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Downsample, Upsample
|
||||
from .resnet import Downsample, ResBlock, TimestepBlock, Upsample
|
||||
|
||||
|
||||
def exists(val):
|
||||
@@ -359,16 +359,14 @@ class AttentionPool2d(nn.Module):
|
||||
return x[:, :, 0]
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
# class TimestepBlock(nn.Module):
|
||||
# """
|
||||
# Any module where forward() takes timestep embeddings as a second argument. #"""
|
||||
#
|
||||
# @abstractmethod
|
||||
# def forward(self, x, emb):
|
||||
# """
|
||||
# Apply the module to `x` given `emb` timestep embeddings. #"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
@@ -387,99 +385,97 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
return x
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels. :param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param
|
||||
out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use
|
||||
a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
|
||||
on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
|
||||
downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
# class A_ResBlock(TimestepBlock):
|
||||
# """
|
||||
# A residual block that can optionally change the number of channels. :param channels: the number of input channels. #
|
||||
:param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param #
|
||||
out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use # a
|
||||
spatial # convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. # :param
|
||||
dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing # on this
|
||||
module. :param up: if True, use this block for upsampling. :param down: if True, use this block for # downsampling. #"""
|
||||
#
|
||||
# def __init__(
|
||||
# self,
|
||||
# channels,
|
||||
# emb_channels,
|
||||
# dropout,
|
||||
# out_channels=None,
|
||||
# use_conv=False,
|
||||
# use_scale_shift_norm=False,
|
||||
# dims=2,
|
||||
# use_checkpoint=False,
|
||||
# up=False,
|
||||
# down=False,
|
||||
# ):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.emb_channels = emb_channels
|
||||
# self.dropout = dropout
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.use_checkpoint = use_checkpoint
|
||||
# self.use_scale_shift_norm = use_scale_shift_norm
|
||||
#
|
||||
# self.in_layers = nn.Sequential(
|
||||
# normalization(channels),
|
||||
# nn.SiLU(),
|
||||
# conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
# )
|
||||
#
|
||||
# self.updown = up or down
|
||||
#
|
||||
# if up:
|
||||
# self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
# self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
# elif down:
|
||||
# self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
# self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
|
||||
# else:
|
||||
# self.h_upd = self.x_upd = nn.Identity()
|
||||
#
|
||||
# self.emb_layers = nn.Sequential(
|
||||
# nn.SiLU(),
|
||||
# linear(
|
||||
# emb_channels,
|
||||
# 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
# ),
|
||||
# )
|
||||
# self.out_layers = nn.Sequential(
|
||||
# normalization(self.out_channels),
|
||||
# nn.SiLU(),
|
||||
# nn.Dropout(p=dropout),
|
||||
# zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
|
||||
# )
|
||||
#
|
||||
# if self.out_channels == channels:
|
||||
# self.skip_connection = nn.Identity()
|
||||
# elif use_conv:
|
||||
# self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
||||
# else:
|
||||
# self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
#
|
||||
# def forward(self, x, emb):
|
||||
# if self.updown:
|
||||
# in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
# h = in_rest(x)
|
||||
# h = self.h_upd(h)
|
||||
# x = self.x_upd(x)
|
||||
# h = in_conv(h)
|
||||
# else:
|
||||
# h = self.in_layers(x)
|
||||
# emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
# while len(emb_out.shape) < len(h.shape):
|
||||
# emb_out = emb_out[..., None]
|
||||
# if self.use_scale_shift_norm:
|
||||
# out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
# scale, shift = torch.chunk(emb_out, 2, dim=1)
|
||||
# h = out_norm(h) * (1 + scale) + shift
|
||||
# h = out_rest(h)
|
||||
# else:
|
||||
# h = h + emb_out
|
||||
# h = self.out_layers(h)
|
||||
# return self.skip_connection(x) + h
|
||||
#
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
|
||||
@@ -6,6 +6,7 @@ import torch.nn as nn
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import ResidualTemporalBlock
|
||||
|
||||
|
||||
class SinusoidalPosEmb(nn.Module):
|
||||
@@ -72,36 +73,35 @@ class Conv1dBlock(nn.Module):
|
||||
return self.block(x)
|
||||
|
||||
|
||||
class ResidualTemporalBlock(nn.Module):
|
||||
def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
|
||||
super().__init__()
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Conv1dBlock(inp_channels, out_channels, kernel_size),
|
||||
Conv1dBlock(out_channels, out_channels, kernel_size),
|
||||
]
|
||||
)
|
||||
|
||||
self.time_mlp = nn.Sequential(
|
||||
nn.Mish(),
|
||||
nn.Linear(embed_dim, out_channels),
|
||||
RearrangeDim(),
|
||||
# Rearrange("batch t -> batch t 1"),
|
||||
)
|
||||
|
||||
self.residual_conv = (
|
||||
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x, t):
|
||||
"""
|
||||
x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
|
||||
out_channels x horizon ]
|
||||
"""
|
||||
out = self.blocks[0](x) + self.time_mlp(t)
|
||||
out = self.blocks[1](out)
|
||||
return out + self.residual_conv(x)
|
||||
# class ResidualTemporalBlock(nn.Module):
|
||||
# def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
|
||||
# super().__init__()
|
||||
#
|
||||
# self.blocks = nn.ModuleList(
|
||||
# [
|
||||
# Conv1dBlock(inp_channels, out_channels, kernel_size),
|
||||
# Conv1dBlock(out_channels, out_channels, kernel_size),
|
||||
# ]
|
||||
# )
|
||||
#
|
||||
# self.time_mlp = nn.Sequential(
|
||||
# nn.Mish(),
|
||||
# nn.Linear(embed_dim, out_channels),
|
||||
# RearrangeDim(),
|
||||
# Rearrange("batch t -> batch t 1"),
|
||||
# )
|
||||
#
|
||||
# self.residual_conv = (
|
||||
# nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
|
||||
# )
|
||||
#
|
||||
# def forward(self, x, t):
|
||||
# """
|
||||
# x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x #
|
||||
out_channels x horizon ] #"""
|
||||
# out = self.blocks[0](x) + self.time_mlp(t)
|
||||
# out = self.blocks[1](out)
|
||||
# return out + self.residual_conv(x)
|
||||
|
||||
|
||||
class TemporalUNet(ModelMixin, ConfigMixin): # (nn.Module):
|
||||
|
||||
@@ -28,6 +28,7 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .attention import AttentionBlock
|
||||
from .embeddings import GaussianFourierProjection, get_timestep_embedding
|
||||
from .resnet import ResnetBlockBigGANpp, ResnetBlockDDPMpp
|
||||
|
||||
|
||||
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
||||
@@ -299,7 +300,7 @@ def downsample_2d(x, k=None, factor=2, gain=1):
|
||||
return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
|
||||
|
||||
|
||||
def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0):
|
||||
def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0):
|
||||
"""1x1 convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
|
||||
conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
|
||||
@@ -307,7 +308,7 @@ def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, pad
|
||||
return conv
|
||||
|
||||
|
||||
def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1):
|
||||
def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1):
|
||||
"""3x3 convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias
|
||||
@@ -317,10 +318,6 @@ def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_sc
|
||||
return conv
|
||||
|
||||
|
||||
conv1x1 = ddpm_conv1x1
|
||||
conv3x3 = ddpm_conv3x3
|
||||
|
||||
|
||||
def _einsum(a, b, c, x, y):
|
||||
einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c))
|
||||
return torch.einsum(einsum_str, x, y)
|
||||
@@ -494,135 +491,135 @@ class Downsample(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlockDDPMpp(nn.Module):
|
||||
"""ResBlock adapted from DDPM."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
act,
|
||||
in_ch,
|
||||
out_ch=None,
|
||||
temb_dim=None,
|
||||
conv_shortcut=False,
|
||||
dropout=0.1,
|
||||
skip_rescale=False,
|
||||
init_scale=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
out_ch = out_ch if out_ch else in_ch
|
||||
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
if temb_dim is not None:
|
||||
self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
|
||||
nn.init.zeros_(self.Dense_0.bias)
|
||||
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
self.Dropout_0 = nn.Dropout(dropout)
|
||||
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
if in_ch != out_ch:
|
||||
if conv_shortcut:
|
||||
self.Conv_2 = conv3x3(in_ch, out_ch)
|
||||
else:
|
||||
self.NIN_0 = NIN(in_ch, out_ch)
|
||||
|
||||
self.skip_rescale = skip_rescale
|
||||
self.act = act
|
||||
self.out_ch = out_ch
|
||||
self.conv_shortcut = conv_shortcut
|
||||
|
||||
def forward(self, x, temb=None):
|
||||
h = self.act(self.GroupNorm_0(x))
|
||||
h = self.Conv_0(h)
|
||||
if temb is not None:
|
||||
h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
h = self.act(self.GroupNorm_1(h))
|
||||
h = self.Dropout_0(h)
|
||||
h = self.Conv_1(h)
|
||||
if x.shape[1] != self.out_ch:
|
||||
if self.conv_shortcut:
|
||||
x = self.Conv_2(x)
|
||||
else:
|
||||
x = self.NIN_0(x)
|
||||
if not self.skip_rescale:
|
||||
return x + h
|
||||
else:
|
||||
return (x + h) / np.sqrt(2.0)
|
||||
# class ResnetBlockDDPMpp(nn.Module):
|
||||
# """ResBlock adapted from DDPM."""
|
||||
#
|
||||
# def __init__(
|
||||
# self,
|
||||
# act,
|
||||
# in_ch,
|
||||
# out_ch=None,
|
||||
# temb_dim=None,
|
||||
# conv_shortcut=False,
|
||||
# dropout=0.1,
|
||||
# skip_rescale=False,
|
||||
# init_scale=0.0,
|
||||
# ):
|
||||
# super().__init__()
|
||||
# out_ch = out_ch if out_ch else in_ch
|
||||
# self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
# self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
# if temb_dim is not None:
|
||||
# self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
# self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
|
||||
# nn.init.zeros_(self.Dense_0.bias)
|
||||
# self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
# self.Dropout_0 = nn.Dropout(dropout)
|
||||
# self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
# if in_ch != out_ch:
|
||||
# if conv_shortcut:
|
||||
# self.Conv_2 = conv3x3(in_ch, out_ch)
|
||||
# else:
|
||||
# self.NIN_0 = NIN(in_ch, out_ch)
|
||||
#
|
||||
# self.skip_rescale = skip_rescale
|
||||
# self.act = act
|
||||
# self.out_ch = out_ch
|
||||
# self.conv_shortcut = conv_shortcut
|
||||
#
|
||||
# def forward(self, x, temb=None):
|
||||
# h = self.act(self.GroupNorm_0(x))
|
||||
# h = self.Conv_0(h)
|
||||
# if temb is not None:
|
||||
# h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
# h = self.act(self.GroupNorm_1(h))
|
||||
# h = self.Dropout_0(h)
|
||||
# h = self.Conv_1(h)
|
||||
# if x.shape[1] != self.out_ch:
|
||||
# if self.conv_shortcut:
|
||||
# x = self.Conv_2(x)
|
||||
# else:
|
||||
# x = self.NIN_0(x)
|
||||
# if not self.skip_rescale:
|
||||
# return x + h
|
||||
# else:
|
||||
# return (x + h) / np.sqrt(2.0)
|
||||
|
||||
|
||||
class ResnetBlockBigGANpp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
act,
|
||||
in_ch,
|
||||
out_ch=None,
|
||||
temb_dim=None,
|
||||
up=False,
|
||||
down=False,
|
||||
dropout=0.1,
|
||||
fir=False,
|
||||
fir_kernel=(1, 3, 3, 1),
|
||||
skip_rescale=True,
|
||||
init_scale=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
out_ch = out_ch if out_ch else in_ch
|
||||
self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
self.up = up
|
||||
self.down = down
|
||||
self.fir = fir
|
||||
self.fir_kernel = fir_kernel
|
||||
|
||||
self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
if temb_dim is not None:
|
||||
self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
|
||||
nn.init.zeros_(self.Dense_0.bias)
|
||||
|
||||
self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
self.Dropout_0 = nn.Dropout(dropout)
|
||||
self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
if in_ch != out_ch or up or down:
|
||||
self.Conv_2 = conv1x1(in_ch, out_ch)
|
||||
|
||||
self.skip_rescale = skip_rescale
|
||||
self.act = act
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
|
||||
def forward(self, x, temb=None):
|
||||
h = self.act(self.GroupNorm_0(x))
|
||||
|
||||
if self.up:
|
||||
if self.fir:
|
||||
h = upsample_2d(h, self.fir_kernel, factor=2)
|
||||
x = upsample_2d(x, self.fir_kernel, factor=2)
|
||||
else:
|
||||
h = naive_upsample_2d(h, factor=2)
|
||||
x = naive_upsample_2d(x, factor=2)
|
||||
elif self.down:
|
||||
if self.fir:
|
||||
h = downsample_2d(h, self.fir_kernel, factor=2)
|
||||
x = downsample_2d(x, self.fir_kernel, factor=2)
|
||||
else:
|
||||
h = naive_downsample_2d(h, factor=2)
|
||||
x = naive_downsample_2d(x, factor=2)
|
||||
|
||||
h = self.Conv_0(h)
|
||||
# Add bias to each feature map conditioned on the time embedding
|
||||
if temb is not None:
|
||||
h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
h = self.act(self.GroupNorm_1(h))
|
||||
h = self.Dropout_0(h)
|
||||
h = self.Conv_1(h)
|
||||
|
||||
if self.in_ch != self.out_ch or self.up or self.down:
|
||||
x = self.Conv_2(x)
|
||||
|
||||
if not self.skip_rescale:
|
||||
return x + h
|
||||
else:
|
||||
return (x + h) / np.sqrt(2.0)
|
||||
# class ResnetBlockBigGANpp(nn.Module):
|
||||
# def __init__(
|
||||
# self,
|
||||
# act,
|
||||
# in_ch,
|
||||
# out_ch=None,
|
||||
# temb_dim=None,
|
||||
# up=False,
|
||||
# down=False,
|
||||
# dropout=0.1,
|
||||
# fir=False,
|
||||
# fir_kernel=(1, 3, 3, 1),
|
||||
# skip_rescale=True,
|
||||
# init_scale=0.0,
|
||||
# ):
|
||||
# super().__init__()
|
||||
#
|
||||
# out_ch = out_ch if out_ch else in_ch
|
||||
# self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
|
||||
# self.up = up
|
||||
# self.down = down
|
||||
# self.fir = fir
|
||||
# self.fir_kernel = fir_kernel
|
||||
#
|
||||
# self.Conv_0 = conv3x3(in_ch, out_ch)
|
||||
# if temb_dim is not None:
|
||||
# self.Dense_0 = nn.Linear(temb_dim, out_ch)
|
||||
# self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
|
||||
# nn.init.zeros_(self.Dense_0.bias)
|
||||
#
|
||||
# self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
|
||||
# self.Dropout_0 = nn.Dropout(dropout)
|
||||
# self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
|
||||
# if in_ch != out_ch or up or down:
|
||||
# self.Conv_2 = conv1x1(in_ch, out_ch)
|
||||
#
|
||||
# self.skip_rescale = skip_rescale
|
||||
# self.act = act
|
||||
# self.in_ch = in_ch
|
||||
# self.out_ch = out_ch
|
||||
#
|
||||
# def forward(self, x, temb=None):
|
||||
# h = self.act(self.GroupNorm_0(x))
|
||||
#
|
||||
# if self.up:
|
||||
# if self.fir:
|
||||
# h = upsample_2d(h, self.fir_kernel, factor=2)
|
||||
# x = upsample_2d(x, self.fir_kernel, factor=2)
|
||||
# else:
|
||||
# h = naive_upsample_2d(h, factor=2)
|
||||
# x = naive_upsample_2d(x, factor=2)
|
||||
# elif self.down:
|
||||
# if self.fir:
|
||||
# h = downsample_2d(h, self.fir_kernel, factor=2)
|
||||
# x = downsample_2d(x, self.fir_kernel, factor=2)
|
||||
# else:
|
||||
# h = naive_downsample_2d(h, factor=2)
|
||||
# x = naive_downsample_2d(x, factor=2)
|
||||
#
|
||||
# h = self.Conv_0(h)
|
||||
# Add bias to each feature map conditioned on the time embedding
|
||||
# if temb is not None:
|
||||
# h += self.Dense_0(self.act(temb))[:, :, None, None]
|
||||
# h = self.act(self.GroupNorm_1(h))
|
||||
# h = self.Dropout_0(h)
|
||||
# h = self.Conv_1(h)
|
||||
#
|
||||
# if self.in_ch != self.out_ch or self.up or self.down:
|
||||
# x = self.Conv_2(x)
|
||||
#
|
||||
# if not self.skip_rescale:
|
||||
# return x + h
|
||||
# else:
|
||||
# return (x + h) / np.sqrt(2.0)
|
||||
|
||||
|
||||
class NCSNpp(ModelMixin, ConfigMixin):
|
||||
|
||||
Reference in New Issue
Block a user