mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Support SD3 ControlNet and Multi-ControlNet. (#8566)
* sd3 controlnet --------- Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
This commit is contained in:
@@ -253,6 +253,8 @@
|
||||
title: PriorTransformer
|
||||
- local: api/models/controlnet
|
||||
title: ControlNetModel
|
||||
- local: api/models/controlnet_sd3
|
||||
title: SD3ControlNetModel
|
||||
title: Models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@@ -276,6 +278,8 @@
|
||||
title: Consistency Models
|
||||
- local: api/pipelines/controlnet
|
||||
title: ControlNet
|
||||
- local: api/pipelines/controlnet_sd3
|
||||
title: ControlNet with Stable Diffusion 3
|
||||
- local: api/pipelines/controlnet_sdxl
|
||||
title: ControlNet with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnetxs
|
||||
|
||||
42
docs/source/en/api/models/controlnet_sd3.md
Normal file
42
docs/source/en/api/models/controlnet_sd3.md
Normal file
@@ -0,0 +1,42 @@
|
||||
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# SD3ControlNetModel
|
||||
|
||||
SD3ControlNetModel is an implementation of ControlNet for Stable Diffusion 3.
|
||||
|
||||
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`SD3ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusion3ControlNetPipeline
|
||||
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
||||
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)
|
||||
```
|
||||
|
||||
## SD3ControlNetModel
|
||||
|
||||
[[autodoc]] SD3ControlNetModel
|
||||
|
||||
## SD3ControlNetOutput
|
||||
|
||||
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput
|
||||
|
||||
39
docs/source/en/api/pipelines/controlnet_sd3.md
Normal file
39
docs/source/en/api/pipelines/controlnet_sd3.md
Normal file
@@ -0,0 +1,39 @@
|
||||
<!--Copyright 2023 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ControlNet with Stable Diffusion 3
|
||||
|
||||
StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.
|
||||
|
||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||
|
||||
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
This code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for SD3-ControlNet on [The InstantX Team](https://huggingface.co/InstantX) Hub profile.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
## StableDiffusion3ControlNetPipeline
|
||||
[[autodoc]] StableDiffusion3ControlNetPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusion3PipelineOutput
|
||||
[[autodoc]] pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput
|
||||
@@ -91,6 +91,8 @@ else:
|
||||
"MultiAdapter",
|
||||
"PixArtTransformer2DModel",
|
||||
"PriorTransformer",
|
||||
"SD3ControlNetModel",
|
||||
"SD3MultiControlNetModel",
|
||||
"SD3Transformer2DModel",
|
||||
"StableCascadeUNet",
|
||||
"T2IAdapter",
|
||||
@@ -278,6 +280,7 @@ else:
|
||||
"StableCascadeCombinedPipeline",
|
||||
"StableCascadeDecoderPipeline",
|
||||
"StableCascadePriorPipeline",
|
||||
"StableDiffusion3ControlNetPipeline",
|
||||
"StableDiffusion3Img2ImgPipeline",
|
||||
"StableDiffusion3Pipeline",
|
||||
"StableDiffusionAdapterPipeline",
|
||||
@@ -501,6 +504,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
MultiAdapter,
|
||||
PixArtTransformer2DModel,
|
||||
PriorTransformer,
|
||||
SD3ControlNetModel,
|
||||
SD3MultiControlNetModel,
|
||||
SD3Transformer2DModel,
|
||||
T2IAdapter,
|
||||
T5FilmDecoder,
|
||||
@@ -666,6 +671,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableCascadeCombinedPipeline,
|
||||
StableCascadeDecoderPipeline,
|
||||
StableCascadePriorPipeline,
|
||||
StableDiffusion3ControlNetPipeline,
|
||||
StableDiffusion3Img2ImgPipeline,
|
||||
StableDiffusion3Pipeline,
|
||||
StableDiffusionAdapterPipeline,
|
||||
|
||||
@@ -33,6 +33,7 @@ if is_torch_available():
|
||||
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
||||
_import_structure["autoencoders.vq_model"] = ["VQModel"]
|
||||
_import_structure["controlnet"] = ["ControlNetModel"]
|
||||
_import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
|
||||
_import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
|
||||
_import_structure["embeddings"] = ["ImageProjection"]
|
||||
_import_structure["modeling_utils"] = ["ModelMixin"]
|
||||
@@ -74,6 +75,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
VQModel,
|
||||
)
|
||||
from .controlnet import ControlNetModel
|
||||
from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
|
||||
from .controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel
|
||||
from .embeddings import ImageProjection
|
||||
from .modeling_utils import ModelMixin
|
||||
|
||||
418
src/diffusers/models/controlnet_sd3.py
Normal file
418
src/diffusers/models/controlnet_sd3.py
Normal file
@@ -0,0 +1,418 @@
|
||||
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ..models.attention import JointTransformerBlock
|
||||
from ..models.attention_processor import Attention, AttentionProcessor
|
||||
from ..models.modeling_utils import ModelMixin
|
||||
from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from .controlnet import BaseOutput, zero_module
|
||||
from .embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
||||
from .transformers.transformer_2d import Transformer2DModelOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class SD3ControlNetOutput(BaseOutput):
|
||||
controlnet_block_samples: Tuple[torch.Tensor]
|
||||
|
||||
|
||||
class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sample_size: int = 128,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 16,
|
||||
num_layers: int = 18,
|
||||
attention_head_dim: int = 64,
|
||||
num_attention_heads: int = 18,
|
||||
joint_attention_dim: int = 4096,
|
||||
caption_projection_dim: int = 1152,
|
||||
pooled_projection_dim: int = 2048,
|
||||
out_channels: int = 16,
|
||||
pos_embed_max_size: int = 96,
|
||||
):
|
||||
super().__init__()
|
||||
default_out_channels = in_channels
|
||||
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pos_embed = PatchEmbed(
|
||||
height=sample_size,
|
||||
width=sample_size,
|
||||
patch_size=patch_size,
|
||||
in_channels=in_channels,
|
||||
embed_dim=self.inner_dim,
|
||||
pos_embed_max_size=pos_embed_max_size,
|
||||
)
|
||||
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
||||
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
||||
)
|
||||
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
||||
|
||||
# `attention_head_dim` is doubled to account for the mixing.
|
||||
# It needs to crafted when we get the actual checkpoints.
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
JointTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=self.inner_dim,
|
||||
context_pre_only=False,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# controlnet_blocks
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(len(self.transformer_blocks)):
|
||||
controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
|
||||
controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_blocks.append(controlnet_block)
|
||||
pos_embed_input = PatchEmbed(
|
||||
height=sample_size,
|
||||
width=sample_size,
|
||||
patch_size=patch_size,
|
||||
in_channels=in_channels,
|
||||
embed_dim=self.inner_dim,
|
||||
pos_embed_type=None,
|
||||
)
|
||||
self.pos_embed_input = zero_module(pos_embed_input)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
||||
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
||||
"""
|
||||
Sets the attention processor to use [feed forward
|
||||
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
||||
|
||||
Parameters:
|
||||
chunk_size (`int`, *optional*):
|
||||
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
||||
over each tensor of dim=`dim`.
|
||||
dim (`int`, *optional*, defaults to `0`):
|
||||
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
||||
or dim=1 (sequence length).
|
||||
"""
|
||||
if dim not in [0, 1]:
|
||||
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
||||
|
||||
# By default chunk size is 1
|
||||
chunk_size = chunk_size or 1
|
||||
|
||||
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
||||
if hasattr(module, "set_chunk_feed_forward"):
|
||||
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
||||
|
||||
for child in module.children():
|
||||
fn_recursive_feed_forward(child, chunk_size, dim)
|
||||
|
||||
for module in self.children():
|
||||
fn_recursive_feed_forward(module, chunk_size, dim)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
@classmethod
|
||||
def from_transformer(cls, transformer, num_layers=None, load_weights_from_transformer=True):
|
||||
config = transformer.config
|
||||
config["num_layers"] = num_layers or config.num_layers
|
||||
controlnet = cls(**config)
|
||||
|
||||
if load_weights_from_transformer:
|
||||
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict(), strict=False)
|
||||
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict(), strict=False)
|
||||
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict(), strict=False)
|
||||
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict())
|
||||
|
||||
controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)
|
||||
|
||||
return controlnet
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
controlnet_cond: torch.Tensor,
|
||||
conditioning_scale: float = 1.0,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
pooled_projections: torch.FloatTensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`SD3Transformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
||||
Input `hidden_states`.
|
||||
controlnet_cond (`torch.Tensor`):
|
||||
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
conditioning_scale (`float`, defaults to `1.0`):
|
||||
The scale factor for ControlNet outputs.
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
height, width = hidden_states.shape[-2:]
|
||||
|
||||
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
||||
temb = self.time_text_embed(timestep, pooled_projections)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
# add
|
||||
hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)
|
||||
|
||||
block_res_samples = ()
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
|
||||
)
|
||||
|
||||
block_res_samples = block_res_samples + (hidden_states,)
|
||||
|
||||
controlnet_block_res_samples = ()
|
||||
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
||||
block_res_sample = controlnet_block(block_res_sample)
|
||||
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
||||
|
||||
# 6. scaling
|
||||
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (controlnet_block_res_samples,)
|
||||
|
||||
return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
|
||||
|
||||
|
||||
class SD3MultiControlNetModel(ModelMixin):
|
||||
r"""
|
||||
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
|
||||
|
||||
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
|
||||
compatible with `SD3ControlNetModel`.
|
||||
|
||||
Args:
|
||||
controlnets (`List[SD3ControlNetModel]`):
|
||||
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
||||
`SD3ControlNetModel` as a list.
|
||||
"""
|
||||
|
||||
def __init__(self, controlnets):
|
||||
super().__init__()
|
||||
self.nets = nn.ModuleList(controlnets)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
controlnet_cond: List[torch.tensor],
|
||||
conditioning_scale: List[float],
|
||||
pooled_projections: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SD3ControlNetOutput, Tuple]:
|
||||
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
||||
block_samples = controlnet(
|
||||
hidden_states=hidden_states,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
pooled_projections=pooled_projections,
|
||||
controlnet_cond=image,
|
||||
conditioning_scale=scale,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
# merge samples
|
||||
if i == 0:
|
||||
control_block_samples = block_samples
|
||||
else:
|
||||
control_block_samples = [
|
||||
control_block_sample + block_sample
|
||||
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
|
||||
]
|
||||
control_block_samples = (tuple(control_block_samples),)
|
||||
|
||||
return control_block_samples
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
||||
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -245,6 +245,7 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
pooled_projections: torch.FloatTensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
block_controlnet_hidden_states: List = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
@@ -260,6 +261,8 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
@@ -293,7 +296,7 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
temb = self.time_text_embed(timestep, pooled_projections)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
@@ -319,6 +322,11 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
||||
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
||||
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ from ..utils import (
|
||||
_dummy_objects = {}
|
||||
_import_structure = {
|
||||
"controlnet": [],
|
||||
"controlnet_sd3": [],
|
||||
"controlnet_xs": [],
|
||||
"deprecated": [],
|
||||
"latent_diffusion": [],
|
||||
@@ -142,6 +143,11 @@ else:
|
||||
"StableDiffusionXLControlNetXSPipeline",
|
||||
]
|
||||
)
|
||||
_import_structure["controlnet_sd3"].extend(
|
||||
[
|
||||
"StableDiffusion3ControlNetPipeline",
|
||||
]
|
||||
)
|
||||
_import_structure["deepfloyd_if"] = [
|
||||
"IFImg2ImgPipeline",
|
||||
"IFImg2ImgSuperResolutionPipeline",
|
||||
@@ -394,6 +400,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableDiffusionXLControlNetInpaintPipeline,
|
||||
StableDiffusionXLControlNetPipeline,
|
||||
)
|
||||
from .controlnet_sd3 import (
|
||||
StableDiffusion3ControlNetPipeline,
|
||||
)
|
||||
from .controlnet_xs import (
|
||||
StableDiffusionControlNetXSPipeline,
|
||||
StableDiffusionXLControlNetXSPipeline,
|
||||
|
||||
53
src/diffusers/pipelines/controlnet_sd3/__init__.py
Normal file
53
src/diffusers/pipelines/controlnet_sd3/__init__.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_flax_available,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_stable_diffusion_3_controlnet"] = ["StableDiffusion3ControlNetPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_stable_diffusion_3_controlnet import StableDiffusion3ControlNetPipeline
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_flax_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_flax_and_transformers_objects import * # noqa F403
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
File diff suppressed because it is too large
Load Diff
@@ -242,6 +242,36 @@ class PriorTransformer(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SD3ControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SD3MultiControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SD3Transformer2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -902,6 +902,21 @@ class StableCascadePriorPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusion3ControlNetPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusion3Img2ImgPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
0
tests/pipelines/controlnet_sd3/__init__.py
Normal file
0
tests/pipelines/controlnet_sd3/__init__.py
Normal file
348
tests/pipelines/controlnet_sd3/test_controlnet_sd3.py
Normal file
348
tests/pipelines/controlnet_sd3/test_controlnet_sd3.py
Normal file
@@ -0,0 +1,348 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc and The InstantX Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
SD3Transformer2DModel,
|
||||
StableDiffusion3ControlNetPipeline,
|
||||
)
|
||||
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
||||
from diffusers.utils import load_image
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
pipeline_class = StableDiffusion3ControlNetPipeline
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"guidance_scale",
|
||||
"negative_prompt",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt"])
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = SD3Transformer2DModel(
|
||||
sample_size=32,
|
||||
patch_size=1,
|
||||
in_channels=8,
|
||||
num_layers=4,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=4,
|
||||
joint_attention_dim=32,
|
||||
caption_projection_dim=32,
|
||||
pooled_projection_dim=64,
|
||||
out_channels=8,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
controlnet = SD3ControlNetModel(
|
||||
sample_size=32,
|
||||
patch_size=1,
|
||||
in_channels=8,
|
||||
num_layers=1,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=4,
|
||||
joint_attention_dim=32,
|
||||
caption_projection_dim=32,
|
||||
pooled_projection_dim=64,
|
||||
out_channels=8,
|
||||
)
|
||||
clip_text_encoder_config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
hidden_act="gelu",
|
||||
projection_dim=32,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
sample_size=32,
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
block_out_channels=(4,),
|
||||
layers_per_block=1,
|
||||
latent_channels=8,
|
||||
norm_num_groups=1,
|
||||
use_quant_conv=False,
|
||||
use_post_quant_conv=False,
|
||||
shift_factor=0.0609,
|
||||
scaling_factor=1.5035,
|
||||
)
|
||||
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
return {
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"text_encoder_2": text_encoder_2,
|
||||
"text_encoder_3": text_encoder_3,
|
||||
"tokenizer": tokenizer,
|
||||
"tokenizer_2": tokenizer_2,
|
||||
"tokenizer_3": tokenizer_3,
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"controlnet": controlnet,
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
control_image = randn_tensor(
|
||||
(1, 3, 32, 32),
|
||||
generator=generator,
|
||||
device=torch.device(device),
|
||||
dtype=torch.float16,
|
||||
)
|
||||
|
||||
controlnet_conditioning_scale = 0.5
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"output_type": "np",
|
||||
"control_image": control_image,
|
||||
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
||||
}
|
||||
|
||||
return inputs
|
||||
|
||||
def test_controlnet_sd3(self):
|
||||
components = self.get_dummy_components()
|
||||
sd_pipe = StableDiffusion3ControlNetPipeline(**components)
|
||||
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
output = sd_pipe(**inputs)
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
assert image.shape == (1, 32, 32, 3)
|
||||
|
||||
expected_slice = np.array(
|
||||
[0.5761719, 0.71777344, 0.59228516, 0.578125, 0.6020508, 0.39453125, 0.46728516, 0.51708984, 0.58984375]
|
||||
)
|
||||
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
|
||||
pipeline_class = StableDiffusion3ControlNetPipeline
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_canny(self):
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
|
||||
n_prompt = "NSFW, nude, naked, porn, ugly"
|
||||
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
||||
|
||||
output = pipe(
|
||||
prompt,
|
||||
negative_prompt=n_prompt,
|
||||
control_image=control_image,
|
||||
controlnet_conditioning_scale=0.5,
|
||||
guidance_scale=5.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
generator=generator,
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (1024, 1024, 3)
|
||||
|
||||
original_image = image[-3:, -3:, -1].flatten()
|
||||
|
||||
expected_image = np.array(
|
||||
[0.20947266, 0.1574707, 0.19897461, 0.15063477, 0.1418457, 0.17285156, 0.14160156, 0.13989258, 0.30810547]
|
||||
)
|
||||
|
||||
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
|
||||
|
||||
def test_pose(self):
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
|
||||
n_prompt = "NSFW, nude, naked, porn, ugly"
|
||||
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")
|
||||
|
||||
output = pipe(
|
||||
prompt,
|
||||
negative_prompt=n_prompt,
|
||||
control_image=control_image,
|
||||
controlnet_conditioning_scale=0.5,
|
||||
guidance_scale=5.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
generator=generator,
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (1024, 1024, 3)
|
||||
|
||||
original_image = image[-3:, -3:, -1].flatten()
|
||||
|
||||
expected_image = np.array(
|
||||
[0.8671875, 0.86621094, 0.91015625, 0.8491211, 0.87890625, 0.9140625, 0.8300781, 0.8334961, 0.8623047]
|
||||
)
|
||||
|
||||
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
|
||||
|
||||
def test_tile(self):
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX//SD3-Controlnet-Tile", torch_dtype=torch.float16)
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
|
||||
n_prompt = "NSFW, nude, naked, porn, ugly"
|
||||
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")
|
||||
|
||||
output = pipe(
|
||||
prompt,
|
||||
negative_prompt=n_prompt,
|
||||
control_image=control_image,
|
||||
controlnet_conditioning_scale=0.5,
|
||||
guidance_scale=5.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
generator=generator,
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (1024, 1024, 3)
|
||||
|
||||
original_image = image[-3:, -3:, -1].flatten()
|
||||
|
||||
expected_image = np.array(
|
||||
[0.6982422, 0.7011719, 0.65771484, 0.6904297, 0.7416992, 0.6904297, 0.6977539, 0.7080078, 0.6386719]
|
||||
)
|
||||
|
||||
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
|
||||
|
||||
def test_multi_controlnet(self):
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
||||
controlnet = SD3MultiControlNetModel([controlnet, controlnet])
|
||||
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
|
||||
n_prompt = "NSFW, nude, naked, porn, ugly"
|
||||
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
||||
|
||||
output = pipe(
|
||||
prompt,
|
||||
negative_prompt=n_prompt,
|
||||
control_image=[control_image, control_image],
|
||||
controlnet_conditioning_scale=[0.25, 0.25],
|
||||
guidance_scale=5.0,
|
||||
num_inference_steps=2,
|
||||
output_type="np",
|
||||
generator=generator,
|
||||
)
|
||||
image = output.images[0]
|
||||
|
||||
assert image.shape == (1024, 1024, 3)
|
||||
|
||||
original_image = image[-3:, -3:, -1].flatten()
|
||||
expected_image = np.array(
|
||||
[0.7451172, 0.7416992, 0.7158203, 0.7792969, 0.7607422, 0.7089844, 0.6855469, 0.71777344, 0.7314453]
|
||||
)
|
||||
|
||||
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
|
||||
Reference in New Issue
Block a user