1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

test the full pipeline

This commit is contained in:
anton-l
2022-11-16 00:06:51 +01:00
parent 833cd1de1c
commit e455921ff0
7 changed files with 300 additions and 39 deletions

View File

@@ -28,11 +28,11 @@ from diffusers import (
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
VersatileDiffusionPipeline,
)
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer
from transformers import CLIPProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
SCHEDULER_CONFIG = Namespace(
@@ -44,7 +44,7 @@ SCHEDULER_CONFIG = Namespace(
}
)
UNET_IMAGE_CONFIG = Namespace(
IMAGE_UNET_CONFIG = Namespace(
**{
"input_channels": 4,
"model_channels": 320,
@@ -58,7 +58,7 @@ UNET_IMAGE_CONFIG = Namespace(
}
)
UNET_TEXT_CONFIG = Namespace(
TEXT_UNET_CONFIG = Namespace(
**{
"input_channels": 768,
"model_channels": 320,
@@ -750,21 +750,20 @@ if __name__ == "__main__":
# Convert the UNet2DConditionModel model.
if args.unet_checkpoint_path is not None:
unet_image_config = create_unet_diffusers_config(UNET_IMAGE_CONFIG)
image_unet_config = create_unet_diffusers_config(IMAGE_UNET_CONFIG)
checkpoint = torch.load(args.unet_checkpoint_path)
converted_unet_image_checkpoint = convert_vd_unet_checkpoint(
checkpoint, unet_image_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema
converted_image_unet_checkpoint = convert_vd_unet_checkpoint(
checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema
)
unet_image = UNet2DConditionModel(**unet_image_config)
unet_image.load_state_dict(converted_unet_image_checkpoint)
unet_image.save_pretrained(os.path.join(args.dump_path, "unet_image"))
image_unet = UNet2DConditionModel(**image_unet_config)
image_unet.load_state_dict(converted_image_unet_checkpoint)
# unet_text_config = create_unet_diffusers_config(UNET_TEXT_CONFIG)
# converted_unet_text_checkpoint = convert_vd_unet_checkpoint(
# checkpoint, unet_text_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema
# text_unet_config = create_unet_diffusers_config(TEXT_UNET_CONFIG)
# converted_text_unet_checkpoint = convert_vd_unet_checkpoint(
# checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema
# )
# unet_text = UNet2DConditionModel(**unet_text_config)
# unet_text.load_state_dict(converted_unet_text_checkpoint)
# text_unet = UNet2DConditionModel(**text_unet_config)
# text_unet.load_state_dict(converted_text_unet_checkpoint)
# Convert the VAE model.
if args.vae_checkpoint_path is not None:
@@ -774,28 +773,20 @@ if __name__ == "__main__":
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.save_pretrained(os.path.join(args.dump_path, "vae"))
# Convert the text model.
# text_model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
# if text_model_type == "FrozenCLIPEmbedder":
# text_model = convert_ldm_clip_checkpoint(checkpoint)
# tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
# feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
# pipe = StableDiffusionPipeline(
# vae=vae,
# text_encoder=text_model,
# tokenizer=tokenizer,
# unet=unet,
# scheduler=scheduler,
# safety_checker=safety_checker,
# feature_extractor=feature_extractor,
# )
# else:
# text_config = create_ldm_bert_config(original_config)
# text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
# tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
# pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
#
# pipe.save_pretrained(args.dump_path)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
image_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
pipe = VersatileDiffusionPipeline(
scheduler=scheduler,
tokenizer=tokenizer,
image_processor=image_processor,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_unet=image_unet,
# text_unet=text_unet,
vae=vae,
)
pipe.save_pretrained(args.dump_path)

View File

@@ -71,6 +71,7 @@ if is_torch_available() and is_transformers_available():
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
VersatileDiffusionPipeline,
VQDiffusionPipeline,
)
else:

View File

@@ -23,6 +23,7 @@ if is_torch_available() and is_transformers_available():
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
)
from .versatile_diffusion import VersatileDiffusionPipeline
from .vq_diffusion import VQDiffusionPipeline
if is_transformers_available() and is_onnx_available():

View File

@@ -0,0 +1 @@
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline

View File

@@ -0,0 +1,215 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers import CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
class VersatileDiffusionPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
vqvae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
bert ([`LDMBertModel`]):
Text-encoder model based on [BERT](https://huggingface.co/docs/transformers/model_doc/bert) architecture.
tokenizer (`transformers.BertTokenizer`):
Tokenizer of class
[BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
tokenizer: CLIPTokenizer
image_processor: CLIPProcessor
text_encoder: CLIPTextModel
image_encoder: CLIPVisionModel
image_unet: UNet2DConditionModel
vae: Union[VQModel, AutoencoderKL]
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
def __init__(
self,
tokenizer: CLIPTokenizer,
image_processor: CLIPProcessor,
text_encoder: CLIPTextModel,
image_encoder: CLIPVisionModel,
image_unet: UNet2DConditionModel,
vae: Union[VQModel, AutoencoderKL],
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
image_processor=image_processor,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_unet=image_unet,
vae=vae,
scheduler=scheduler,
)
def _encode_prompt(self, prompt, do_classifier_free_guidance):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
"""
def _normalize_embeddings(encoder_output):
embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state)
embeds_pooled = encoder_output.text_embeds
embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True)
return embeds
batch_size = len(prompt) if isinstance(prompt, list) else 1
if do_classifier_free_guidance:
uncond_input = self.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))
uncond_embeddings = _normalize_embeddings(uncond_embeddings)
# get prompt text embeddings
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))
text_embeddings = _normalize_embeddings(text_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 1.0,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 256):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 256):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 1.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt` at
the, usually at the expense of lower image quality.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
do_classifier_free_guidance = guidance_scale > 1.0
text_embeddings = self._encode_prompt(prompt, do_classifier_free_guidance)
latents = torch.randn(
(batch_size, self.image_unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
for t in self.progress_bar(self.scheduler.timesteps):
if not do_classifier_free_guidance:
latents_input = latents
else:
latents_input = torch.cat([latents] * 2)
# predict the noise residual
noise_pred = self.image_unet(latents_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if guidance_scale != 1.0:
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)

View File

@@ -0,0 +1,52 @@
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import require_torch, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class VersatileDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pass
@slow
@require_torch
class VersatileDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_inference_text2img(self):
pipe = VersatileDiffusionPipeline.from_pretrained("scripts/vd-diffusers")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2