1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Fix overflow and dtype handling in rgblike_to_depthmap (NumPy + PyTorch) (#12546)

* Fix overflow in rgblike_to_depthmap by safe dtype casting (torch & NumPy)

* Fix: store original dtype and cast back after safe computation

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
Mohammad Sadegh Salehi
2025-11-06 18:18:21 +00:00
committed by GitHub
parent b3e9dfced7
commit e4393fa613

View File

@@ -1045,16 +1045,39 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
r"""
Convert an RGB-like depth image to a depth map.
Args:
image (`Union[np.ndarray, torch.Tensor]`):
The RGB-like depth image to convert.
Returns:
`Union[np.ndarray, torch.Tensor]`:
The corresponding depth map.
"""
return image[:, :, 1] * 2**8 + image[:, :, 2]
# 1. Cast the tensor to a larger integer type (e.g., int32)
# to safely perform the multiplication by 256.
# 2. Perform the 16-bit combination: High-byte * 256 + Low-byte.
# 3. Cast the final result to the desired depth map type (uint16) if needed
# before returning, though leaving it as int32/int64 is often safer
# for return value from a library function.
if isinstance(image, torch.Tensor):
# Cast to a safe dtype (e.g., int32 or int64) for the calculation
original_dtype = image.dtype
image_safe = image.to(torch.int32)
# Calculate the depth map
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
# You may want to cast the final result to uint16, but casting to a
# larger int type (like int32) is sufficient to fix the overflow.
# depth_map = depth_map.to(torch.uint16) # Uncomment if uint16 is strictly required
return depth_map.to(original_dtype)
elif isinstance(image, np.ndarray):
# NumPy equivalent: Cast to a safe dtype (e.g., np.int32)
original_dtype = image.dtype
image_safe = image.astype(np.int32)
# Calculate the depth map
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
# depth_map = depth_map.astype(np.uint16) # Uncomment if uint16 is strictly required
return depth_map.astype(original_dtype)
else:
raise TypeError("Input image must be a torch.Tensor or np.ndarray")
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
r"""