|
|
|
|
@@ -0,0 +1,975 @@
|
|
|
|
|
# Copyright 2025 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import inspect
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
|
import re
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
from transformers import Qwen2_5_VLTextModel, Qwen2Tokenizer, T5EncoderModel, ByT5Tokenizer, SiglipVisionModel, SiglipImageProcessor
|
|
|
|
|
|
|
|
|
|
from ...models import AutoencoderKLHunyuanVideo15, HunyuanVideo15Transformer3DModel
|
|
|
|
|
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
|
|
|
|
from .image_processor import HunyuanVideo15ImageProcessor
|
|
|
|
|
from ..pipeline_utils import DiffusionPipeline
|
|
|
|
|
from .pipeline_output import HunyuanVideo15PipelineOutput
|
|
|
|
|
from ...guiders import ClassifierFreeGuidance
|
|
|
|
|
from ...utils.torch_utils import randn_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_torch_xla_available():
|
|
|
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
|
|
|
|
|
|
XLA_AVAILABLE = True
|
|
|
|
|
else:
|
|
|
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
|
|
|
Examples:
|
|
|
|
|
```python
|
|
|
|
|
>>> import torch
|
|
|
|
|
>>> from diffusers import HunyuanVideo15Pipeline
|
|
|
|
|
>>> from diffusers.utils import export_to_video
|
|
|
|
|
|
|
|
|
|
>>> model_id = "hunyuanvideo-community/HunyuanVideo15"
|
|
|
|
|
>>> pipe = HunyuanVideo15Pipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
|
|
|
|
>>> pipe.vae.enable_tiling()
|
|
|
|
|
>>> pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
>>> output = pipe(
|
|
|
|
|
... prompt="A cat walks on the grass, realistic",
|
|
|
|
|
... num_inference_steps=50,
|
|
|
|
|
... ).frames[0]
|
|
|
|
|
>>> export_to_video(output, "output.mp4", fps=15)
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_text_input(prompt: List[str], system_message: str
|
|
|
|
|
) -> List[Dict[str, Any]]:
|
|
|
|
|
"""
|
|
|
|
|
Apply text to template.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (List[str]): Input text.
|
|
|
|
|
system_message (str): System message.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[Dict[str, Any]]: List of chat conversation.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
template = [
|
|
|
|
|
[
|
|
|
|
|
{
|
|
|
|
|
'role': 'system',
|
|
|
|
|
'content': system_message},
|
|
|
|
|
{'role': 'user', 'content': p if p else " "}
|
|
|
|
|
]
|
|
|
|
|
for p in prompt]
|
|
|
|
|
|
|
|
|
|
return template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_glyph_texts(prompt: str) -> List[str]:
|
|
|
|
|
"""
|
|
|
|
|
Extract glyph texts from prompt using regex pattern.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt: Input prompt string
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of extracted glyph texts
|
|
|
|
|
"""
|
|
|
|
|
pattern = r'\"(.*?)\"|“(.*?)”'
|
|
|
|
|
matches = re.findall(pattern, prompt)
|
|
|
|
|
result = [match[0] or match[1] for match in matches]
|
|
|
|
|
result = list(dict.fromkeys(result)) if len(result) > 1 else result
|
|
|
|
|
|
|
|
|
|
if result:
|
|
|
|
|
formatted_result = ". ".join([f'Text "{text}"' for text in result]) + ". "
|
|
|
|
|
else:
|
|
|
|
|
formatted_result = None
|
|
|
|
|
|
|
|
|
|
return formatted_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
|
|
|
def retrieve_latents(
|
|
|
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
|
|
|
):
|
|
|
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
|
|
|
|
return encoder_output.latent_dist.sample(generator)
|
|
|
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
|
|
|
|
return encoder_output.latent_dist.mode()
|
|
|
|
|
elif hasattr(encoder_output, "latents"):
|
|
|
|
|
return encoder_output.latents
|
|
|
|
|
else:
|
|
|
|
|
raise AttributeError("Could not access latents of provided encoder_output")
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
|
|
|
def retrieve_timesteps(
|
|
|
|
|
scheduler,
|
|
|
|
|
num_inference_steps: Optional[int] = None,
|
|
|
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
|
|
|
timesteps: Optional[List[int]] = None,
|
|
|
|
|
sigmas: Optional[List[float]] = None,
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
|
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
scheduler (`SchedulerMixin`):
|
|
|
|
|
The scheduler to get timesteps from.
|
|
|
|
|
num_inference_steps (`int`):
|
|
|
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
|
|
|
must be `None`.
|
|
|
|
|
device (`str` or `torch.device`, *optional*):
|
|
|
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
|
|
|
timesteps (`List[int]`, *optional*):
|
|
|
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
|
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
|
|
|
sigmas (`List[float]`, *optional*):
|
|
|
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
|
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
|
|
|
second element is the number of inference steps.
|
|
|
|
|
"""
|
|
|
|
|
if timesteps is not None and sigmas is not None:
|
|
|
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
|
|
|
if timesteps is not None:
|
|
|
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
|
|
|
if not accepts_timesteps:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
|
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
|
|
|
)
|
|
|
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
|
|
|
timesteps = scheduler.timesteps
|
|
|
|
|
num_inference_steps = len(timesteps)
|
|
|
|
|
elif sigmas is not None:
|
|
|
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
|
|
|
if not accept_sigmas:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
|
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
|
|
|
)
|
|
|
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
|
|
|
timesteps = scheduler.timesteps
|
|
|
|
|
num_inference_steps = len(timesteps)
|
|
|
|
|
else:
|
|
|
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
|
|
|
timesteps = scheduler.timesteps
|
|
|
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HunyuanVideo15Image2VideoPipeline(DiffusionPipeline):
|
|
|
|
|
r"""
|
|
|
|
|
Pipeline for image-to-video generation using HunyuanVideo1.5.
|
|
|
|
|
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
|
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
transformer ([`HunyuanVideo15Transformer3DModel`]):
|
|
|
|
|
Conditional Transformer (MMDiT) architecture to denoise the encoded video latents.
|
|
|
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
|
|
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
|
|
|
|
vae ([`AutoencoderKLHunyuanVideo15`]):
|
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
|
|
|
|
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
|
|
|
|
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
|
|
|
|
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
|
|
|
|
tokenizer (`Qwen2Tokenizer`): Tokenizer of class [Qwen2Tokenizer].
|
|
|
|
|
text_encoder_2 ([`T5EncoderModel`]):
|
|
|
|
|
[T5EncoderModel](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel)
|
|
|
|
|
variant.
|
|
|
|
|
tokenizer_2 (`ByT5Tokenizer`): Tokenizer of class [ByT5Tokenizer]
|
|
|
|
|
guider ([`ClassifierFreeGuidance`]):
|
|
|
|
|
[ClassifierFreeGuidance]for classifier free guidance.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
|
|
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
text_encoder: Qwen2_5_VLTextModel,
|
|
|
|
|
tokenizer: Qwen2Tokenizer,
|
|
|
|
|
transformer: HunyuanVideo15Transformer3DModel,
|
|
|
|
|
vae: AutoencoderKLHunyuanVideo15,
|
|
|
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
|
|
|
text_encoder_2: T5EncoderModel,
|
|
|
|
|
tokenizer_2: ByT5Tokenizer,
|
|
|
|
|
guider: ClassifierFreeGuidance,
|
|
|
|
|
image_encoder: SiglipVisionModel,
|
|
|
|
|
feature_extractor: SiglipImageProcessor,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
vae=vae,
|
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
transformer=transformer,
|
|
|
|
|
scheduler=scheduler,
|
|
|
|
|
text_encoder_2=text_encoder_2,
|
|
|
|
|
tokenizer_2=tokenizer_2,
|
|
|
|
|
guider=guider,
|
|
|
|
|
image_encoder=image_encoder,
|
|
|
|
|
feature_extractor=feature_extractor,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
|
|
|
|
|
self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 16
|
|
|
|
|
self.video_processor = HunyuanVideo15ImageProcessor(vae_scale_factor=self.vae_scale_factor_spatial, do_resize=False, do_convert_rgb=True)
|
|
|
|
|
self.target_size = self.transformer.config.target_size if getattr(self, "transformer", None) else 640
|
|
|
|
|
self.vision_states_dim = self.transformer.config.image_embed_dim if getattr(self, "transformer", None) else 1152
|
|
|
|
|
self.num_channels_latents = self.vae.config.latent_channels if hasattr(self, "vae") else 32
|
|
|
|
|
# fmt: off
|
|
|
|
|
self.system_message = "You are a helpful assistant. Describe the video by detailing the following aspects: \
|
|
|
|
|
1. The main content and theme of the video. \
|
|
|
|
|
2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects. \
|
|
|
|
|
3. Actions, events, behaviors temporal relationships, physical movement changes of the objects. \
|
|
|
|
|
4. background environment, light, style and atmosphere. \
|
|
|
|
|
5. camera angles, movements, and transitions used in the video."
|
|
|
|
|
# fmt: on
|
|
|
|
|
self.prompt_template_encode_start_idx = 108
|
|
|
|
|
self.tokenizer_max_length = 1000
|
|
|
|
|
self.tokenizer_2_max_length = 256
|
|
|
|
|
self.vision_num_semantic_tokens = 729
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
# Copied from diffusers.pipelines.hunyuan_video1_5.pipeline_hunyuan_video1_5.HunyuanVideo15Pipeline._get_mllm_prompt_embeds
|
|
|
|
|
def _get_mllm_prompt_embeds(
|
|
|
|
|
text_encoder: Qwen2_5_VLTextModel,
|
|
|
|
|
tokenizer: Qwen2Tokenizer,
|
|
|
|
|
prompt: Union[str, List[str]],
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
tokenizer_max_length: int = 1000,
|
|
|
|
|
num_hidden_layers_to_skip: int = 2,
|
|
|
|
|
# fmt: off
|
|
|
|
|
system_message: str = "You are a helpful assistant. Describe the video by detailing the following aspects: \
|
|
|
|
|
1. The main content and theme of the video. \
|
|
|
|
|
2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects. \
|
|
|
|
|
3. Actions, events, behaviors temporal relationships, physical movement changes of the objects. \
|
|
|
|
|
4. background environment, light, style and atmosphere. \
|
|
|
|
|
5. camera angles, movements, and transitions used in the video.",
|
|
|
|
|
# fmt: on
|
|
|
|
|
crop_start: int = 108,
|
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
|
|
|
|
|
prompt = format_text_input(prompt, system_message)
|
|
|
|
|
|
|
|
|
|
text_inputs = tokenizer.apply_chat_template(
|
|
|
|
|
prompt,
|
|
|
|
|
add_generation_prompt=True,
|
|
|
|
|
tokenize=True,
|
|
|
|
|
return_dict=True,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=tokenizer_max_length + crop_start,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
text_input_ids = text_inputs.input_ids.to(device=device)
|
|
|
|
|
prompt_attention_mask = text_inputs.attention_mask.to(device=device)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = text_encoder(
|
|
|
|
|
input_ids=text_input_ids,
|
|
|
|
|
attention_mask=prompt_attention_mask,
|
|
|
|
|
output_hidden_states=True,
|
|
|
|
|
).hidden_states[-(num_hidden_layers_to_skip + 1)]
|
|
|
|
|
|
|
|
|
|
if crop_start is not None and crop_start > 0:
|
|
|
|
|
prompt_embeds = prompt_embeds[:, crop_start:]
|
|
|
|
|
prompt_attention_mask = prompt_attention_mask[:, crop_start:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return prompt_embeds, prompt_attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
# Copied from diffusers.pipelines.hunyuan_video1_5.pipeline_hunyuan_video1_5.HunyuanVideo15Pipeline._get_byt5_prompt_embeds
|
|
|
|
|
def _get_byt5_prompt_embeds(
|
|
|
|
|
tokenizer: ByT5Tokenizer,
|
|
|
|
|
text_encoder: T5EncoderModel,
|
|
|
|
|
prompt: Union[str, List[str]],
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
tokenizer_max_length: int = 256,
|
|
|
|
|
):
|
|
|
|
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
|
|
|
|
|
glyph_texts = [extract_glyph_texts(p) for p in prompt]
|
|
|
|
|
|
|
|
|
|
prompt_embeds_list = []
|
|
|
|
|
prompt_embeds_mask_list = []
|
|
|
|
|
|
|
|
|
|
for glyph_text in glyph_texts:
|
|
|
|
|
if glyph_text is None:
|
|
|
|
|
glyph_text_embeds = torch.zeros(
|
|
|
|
|
(1, tokenizer_max_length, text_encoder.config.d_model), device=device, text_encoder.dtype
|
|
|
|
|
)
|
|
|
|
|
glyph_text_embeds_mask = torch.zeros(
|
|
|
|
|
(1, tokenizer_max_length), device=device, dtype=torch.int64
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
txt_tokens = tokenizer(
|
|
|
|
|
glyph_text,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=tokenizer_max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
add_special_tokens=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
).to(device)
|
|
|
|
|
|
|
|
|
|
glyph_text_embeds = text_encoder(
|
|
|
|
|
input_ids=txt_tokens.input_ids,
|
|
|
|
|
attention_mask=txt_tokens.attention_mask.float(),
|
|
|
|
|
)[0]
|
|
|
|
|
glyph_text_embeds = glyph_text_embeds.to(device=device)
|
|
|
|
|
glyph_text_embeds_mask = txt_tokens.attention_mask.to(device=device)
|
|
|
|
|
|
|
|
|
|
prompt_embeds_list.append(glyph_text_embeds)
|
|
|
|
|
prompt_embeds_mask_list.append(glyph_text_embeds_mask)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat(prompt_embeds_list, dim=0)
|
|
|
|
|
prompt_embeds_mask = torch.cat(prompt_embeds_mask_list, dim=0)
|
|
|
|
|
|
|
|
|
|
return prompt_embeds, prompt_embeds_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _get_vae_image_latents(
|
|
|
|
|
vae: AutoencoderKLHunyuanVideo15,
|
|
|
|
|
image_processor: HunyuanVideo15ImageProcessor,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
height: int,
|
|
|
|
|
width: int,
|
|
|
|
|
device: torch.device,
|
|
|
|
|
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
vae_dtype = self.vae.dtype
|
|
|
|
|
image_tensor = image_processor.preprocess(image, height=height, width=width).to(device, dtype=vae_dtype)
|
|
|
|
|
image_latents = retrieve_latents(vae.encode(image_tensor), sample_mode="argmax")
|
|
|
|
|
image_latents = image_latents * vae.config.scaling_factor
|
|
|
|
|
return image_latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _get_image_embeds(
|
|
|
|
|
image_encoder: SiglipVisionModel,
|
|
|
|
|
feature_extractor: SiglipImageProcessor,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
device: torch.device,
|
|
|
|
|
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
image_encoder_dtype = next(image_encoder.parameters()).dtype
|
|
|
|
|
image = feature_extractor.preprocess(
|
|
|
|
|
images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True
|
|
|
|
|
)
|
|
|
|
|
image = image.to(device=device, dtype=image_encoder_dtype)
|
|
|
|
|
image_enc_hidden_states = image_encoder(**image).last_hidden_state
|
|
|
|
|
|
|
|
|
|
return image_enc_hidden_states
|
|
|
|
|
|
|
|
|
|
def encode_image(
|
|
|
|
|
self,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
batch_size: int,
|
|
|
|
|
device: torch.device,
|
|
|
|
|
dtype: torch.dtype,
|
|
|
|
|
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
image_embeds = self._get_image_embeds(
|
|
|
|
|
image_encoder=self.image_encoder,
|
|
|
|
|
feature_extractor=self.feature_extractor,
|
|
|
|
|
image=image,
|
|
|
|
|
device=device,
|
|
|
|
|
)
|
|
|
|
|
image_embeds = image_embeds.repeat(batch_size, 1, 1)
|
|
|
|
|
image_embeds = image_embeds.to(device=device, dtype=dtype)
|
|
|
|
|
return image_embeds
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.hunyuan_video1_5.pipeline_hunyuan_video1_5.HunyuanVideo15Pipeline.encode_prompt
|
|
|
|
|
def encode_prompt(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]],
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
|
batch_size: int = 1,
|
|
|
|
|
num_videos_per_prompt: int = 1,
|
|
|
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_2: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_mask_2: Optional[torch.Tensor] = None,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
prompt to be encoded
|
|
|
|
|
device: (`torch.device`):
|
|
|
|
|
torch device
|
|
|
|
|
batch_size (`int`):
|
|
|
|
|
batch size of prompts, defaults to 1
|
|
|
|
|
num_images_per_prompt (`int`):
|
|
|
|
|
number of images that should be generated per prompt
|
|
|
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. If not provided, text embeddings will be generated from `prompt` input
|
|
|
|
|
argument.
|
|
|
|
|
prompt_embeds_mask (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated text mask. If not provided, text mask will be generated from `prompt` input argument.
|
|
|
|
|
prompt_embeds_2 (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated glyph text embeddings from ByT5. If not provided, will be generated from `prompt` input
|
|
|
|
|
argument using self.tokenizer_2 and self.text_encoder_2.
|
|
|
|
|
prompt_embeds_mask_2 (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated glyph text mask from ByT5. If not provided, will be generated from `prompt` input
|
|
|
|
|
argument using self.tokenizer_2 and self.text_encoder_2.
|
|
|
|
|
"""
|
|
|
|
|
device = device or self._execution_device
|
|
|
|
|
dtype = dtype or self.text_encoder.dtype
|
|
|
|
|
|
|
|
|
|
if prompt is None:
|
|
|
|
|
prompt = [""] * batch_size
|
|
|
|
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is None:
|
|
|
|
|
prompt_embeds, prompt_embeds_mask = self._get_mllm_prompt_embeds(
|
|
|
|
|
tokenizer=self.tokenizer,
|
|
|
|
|
text_encoder=self.text_encoder,
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
tokenizer_max_length=self.tokenizer_max_length,
|
|
|
|
|
system_message=self.system_message,
|
|
|
|
|
crop_start=self.prompt_template_encode_start_idx,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds_2 is None:
|
|
|
|
|
prompt_embeds_2, prompt_embeds_mask_2 = self._get_byt5_prompt_embeds(
|
|
|
|
|
tokenizer=self.tokenizer_2,
|
|
|
|
|
text_encoder=self.text_encoder_2,
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
tokenizer_max_length=self.tokenizer_2_max_length,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
|
|
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
|
|
|
|
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_videos_per_prompt, 1)
|
|
|
|
|
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_videos_per_prompt, seq_len)
|
|
|
|
|
|
|
|
|
|
_, seq_len_2, _ = prompt_embeds_2.shape
|
|
|
|
|
prompt_embeds_2 = prompt_embeds_2.repeat(1, num_videos_per_prompt, 1)
|
|
|
|
|
prompt_embeds_2 = prompt_embeds_2.view(batch_size * num_videos_per_prompt, seq_len_2, -1)
|
|
|
|
|
prompt_embeds_mask_2 = prompt_embeds_mask_2.repeat(1, num_videos_per_prompt, 1)
|
|
|
|
|
prompt_embeds_mask_2 = prompt_embeds_mask_2.view(batch_size * num_videos_per_prompt, seq_len_2)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.to(device=device, dtype=dtype)
|
|
|
|
|
prompt_embeds_mask = prompt_embeds_mask.to(device=device, dtype=dtype)
|
|
|
|
|
prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dtype)
|
|
|
|
|
prompt_embeds_mask_2 = prompt_embeds_mask_2.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
return prompt_embeds, prompt_embeds_mask, prompt_embeds_2, prompt_embeds_mask_2
|
|
|
|
|
|
|
|
|
|
def check_inputs(
|
|
|
|
|
self,
|
|
|
|
|
prompt,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
negative_prompt=None,
|
|
|
|
|
prompt_embeds=None,
|
|
|
|
|
negative_prompt_embeds=None,
|
|
|
|
|
prompt_embeds_mask=None,
|
|
|
|
|
negative_prompt_embeds_mask=None,
|
|
|
|
|
prompt_embeds_2=None,
|
|
|
|
|
prompt_embeds_mask_2=None,
|
|
|
|
|
negative_prompt_embeds_2=None,
|
|
|
|
|
negative_prompt_embeds_mask_2=None,
|
|
|
|
|
):
|
|
|
|
|
if not isinstance(image, PIL.Image.Image):
|
|
|
|
|
raise ValueError(f"`image` has to be of type `PIL.Image.Image` but is {type(image)}")
|
|
|
|
|
|
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
|
|
" only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is None and prompt_embeds is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
|
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is not None and prompt_embeds_mask is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
|
|
|
|
)
|
|
|
|
|
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt is None and prompt_embeds_2 is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds_2 is not None and prompt_embeds_mask_2 is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `prompt_embeds_2` are provided, `prompt_embeds_mask_2` also have to be passed. Make sure to generate `prompt_embeds_mask_2` from the same text encoder that was used to generate `prompt_embeds_2`."
|
|
|
|
|
)
|
|
|
|
|
if negative_prompt_embeds_2 is not None and negative_prompt_embeds_mask_2 is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `negative_prompt_embeds_2` are provided, `negative_prompt_embeds_mask_2` also have to be passed. Make sure to generate `negative_prompt_embeds_mask_2` from the same text encoder that was used to generate `negative_prompt_embeds_2`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.hunyuan_video1_5.pipeline_hunyuan_video1_5.HunyuanVideo15Pipeline.prepare_latents
|
|
|
|
|
def prepare_latents(
|
|
|
|
|
self,
|
|
|
|
|
batch_size: int,
|
|
|
|
|
num_channels_latents: int = 32,
|
|
|
|
|
height: int = 720,
|
|
|
|
|
width: int = 1280,
|
|
|
|
|
num_frames: int = 129,
|
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
latents: Optional[torch.Tensor] = None,
|
|
|
|
|
) -> torch.Tensor:
|
|
|
|
|
if latents is not None:
|
|
|
|
|
return latents.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
shape = (
|
|
|
|
|
batch_size,
|
|
|
|
|
num_channels_latents,
|
|
|
|
|
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
|
|
|
|
|
int(height) // self.vae_scale_factor_spatial,
|
|
|
|
|
int(width) // self.vae_scale_factor_spatial,
|
|
|
|
|
)
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
return latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_cond_latents_and_mask(
|
|
|
|
|
self,
|
|
|
|
|
latents: torch.Tensor,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
batch_size: int,
|
|
|
|
|
height: int,
|
|
|
|
|
width: int,
|
|
|
|
|
dtype: torch.dtype,
|
|
|
|
|
device: torch.device,
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Prepare conditional latents and mask for t2v generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
latents: Main latents tensor (B, C, F, H, W)
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
tuple: (cond_latents_concat, mask_concat) - both are zero tensors for t2v
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
batch, channels, frames, height, width = latents.shape
|
|
|
|
|
|
|
|
|
|
image_latents = self._get_vae_image_latents(
|
|
|
|
|
vae=self.vae,
|
|
|
|
|
image_processor=self.video_processor,
|
|
|
|
|
image=image,
|
|
|
|
|
height=height,
|
|
|
|
|
width=width,
|
|
|
|
|
device=device,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
latent_condition = image_latents.repeat(batch_size, 1, frames, 1, 1)
|
|
|
|
|
latent_condition[:,:,1:, :, :] = 0
|
|
|
|
|
latent_condition = latent_condition.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
latent_mask = torch.zeros(
|
|
|
|
|
batch, 1, frames, height, width,
|
|
|
|
|
dtype=dtype,
|
|
|
|
|
device=device
|
|
|
|
|
)
|
|
|
|
|
latent_mask[:,:, 0, :, :] = 1.0
|
|
|
|
|
|
|
|
|
|
return latent_condition, latent_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def guidance_scale(self):
|
|
|
|
|
return self._guidance_scale
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def num_timesteps(self):
|
|
|
|
|
return self._num_timesteps
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def attention_kwargs(self):
|
|
|
|
|
return self._attention_kwargs
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def current_timestep(self):
|
|
|
|
|
return self._current_timestep
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def interrupt(self):
|
|
|
|
|
return self._interrupt
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
|
|
def __call__(
|
|
|
|
|
self,
|
|
|
|
|
image: PIL.Image.Image,
|
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
|
negative_prompt: Union[str, List[str]] = None,
|
|
|
|
|
num_frames: int = 121,
|
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
|
sigmas: List[float] = None,
|
|
|
|
|
num_videos_per_prompt: Optional[int] = 1,
|
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
latents: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_2: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds_mask_2: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds_mask_2: Optional[torch.Tensor] = None,
|
|
|
|
|
output_type: Optional[str] = "np",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
The call function to the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
|
|
instead.
|
|
|
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
|
|
|
will be used instead.
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
|
|
|
|
not greater than `1`).
|
|
|
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
|
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
|
|
|
|
height (`int`, defaults to `720`):
|
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
|
width (`int`, defaults to `1280`):
|
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
|
num_frames (`int`, defaults to `129`):
|
|
|
|
|
The number of frames in the generated video.
|
|
|
|
|
num_inference_steps (`int`, defaults to `50`):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference.
|
|
|
|
|
sigmas (`List[float]`, *optional*):
|
|
|
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|
|
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|
|
|
|
will be used.
|
|
|
|
|
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
|
|
|
|
True classifier-free guidance (guidance scale) is enabled when `true_cfg_scale` > 1 and
|
|
|
|
|
`negative_prompt` is provided.
|
|
|
|
|
guidance_scale (`float`, defaults to `6.0`):
|
|
|
|
|
Embedded guiddance scale is enabled by setting `guidance_scale` > 1. Higher `guidance_scale` encourages
|
|
|
|
|
a model to generate images more aligned with `prompt` at the expense of lower image quality.
|
|
|
|
|
|
|
|
|
|
Guidance-distilled models approximates true classifer-free guidance for `guidance_scale` > 1. Refer to
|
|
|
|
|
the [paper](https://huggingface.co/papers/2210.03142) to learn more.
|
|
|
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
|
|
generation deterministic.
|
|
|
|
|
latents (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
|
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
|
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
|
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
|
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
|
argument.
|
|
|
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
|
|
|
input argument.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
|
|
|
|
|
attention_kwargs (`dict`, *optional*):
|
|
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
|
|
`self.processor` in
|
|
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
|
clip_skip (`int`, *optional*):
|
|
|
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
|
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
|
|
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|
|
|
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
|
|
|
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
|
|
|
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
|
|
|
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
|
|
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
|
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
|
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
|
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~HunyuanVideoPipelineOutput`] or `tuple`:
|
|
|
|
|
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
|
|
|
|
|
where the first element is a list with the generated images and the second element is a list of `bool`s
|
|
|
|
|
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
|
self.check_inputs(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
image=image,
|
|
|
|
|
negative_prompt=negative_prompt,
|
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
prompt_embeds_mask=prompt_embeds_mask,
|
|
|
|
|
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
|
|
|
|
prompt_embeds_2=prompt_embeds_2,
|
|
|
|
|
prompt_embeds_mask_2=prompt_embeds_mask_2,
|
|
|
|
|
negative_prompt_embeds_2=negative_prompt_embeds_2,
|
|
|
|
|
negative_prompt_embeds_mask_2=negative_prompt_embeds_mask_2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
height, width = self.video_processor.calculate_default_height_width(height=image.size[1], width=image.size[0], target_size=self.target_size)
|
|
|
|
|
image = self.video_processor.resize(image, height=height, width=width, resize_mode="crop")
|
|
|
|
|
|
|
|
|
|
self._attention_kwargs = attention_kwargs
|
|
|
|
|
self._current_timestep = None
|
|
|
|
|
self._interrupt = False
|
|
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
|
|
|
|
prompt_embeds, prompt_embeds_mask, prompt_embeds_2, prompt_embeds_mask_2 = self.encode_prompt(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
dtype=self.transformer.dtype,
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
|
prompt_embeds_mask=prompt_embeds_mask,
|
|
|
|
|
prompt_embeds_2=prompt_embeds_2,
|
|
|
|
|
prompt_embeds_mask_2=prompt_embeds_mask_2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.guider._enabled and self.guider.num_conditions >1 :
|
|
|
|
|
negative_prompt_embeds, negative_prompt_embeds_mask, negative_prompt_embeds_2, negative_prompt_embeds_mask_2 = self.encode_prompt(
|
|
|
|
|
prompt=negative_prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
dtype=self.transformer.dtype,
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
|
|
|
prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
prompt_embeds_mask=negative_prompt_embeds_mask,
|
|
|
|
|
prompt_embeds_2=negative_prompt_embeds_2,
|
|
|
|
|
prompt_embeds_mask_2=negative_prompt_embeds_mask_2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 4. Prepare timesteps
|
|
|
|
|
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
|
|
|
|
|
|
|
|
|
|
# 5. Prepare latent variables
|
|
|
|
|
latents = self.prepare_latents(
|
|
|
|
|
batch_size=batch_size * num_videos_per_prompt,
|
|
|
|
|
num_channels_latents=self.num_channels_latents,
|
|
|
|
|
height=height,
|
|
|
|
|
width=width,
|
|
|
|
|
num_frames=num_frames,
|
|
|
|
|
dtype=self.transformer.dtype,
|
|
|
|
|
device=device,
|
|
|
|
|
generator=generator,
|
|
|
|
|
latents=latents,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
cond_latents_concat, mask_concat = self.prepare_cond_latents_and_mask(
|
|
|
|
|
latents =latenets,
|
|
|
|
|
image=image,
|
|
|
|
|
batch_size=batch_size * num_videos_per_prompt,
|
|
|
|
|
height=height,
|
|
|
|
|
width=width,
|
|
|
|
|
dtype=self.transformer.dtype,
|
|
|
|
|
device=device
|
|
|
|
|
)
|
|
|
|
|
image_embeds = self.encode_image(
|
|
|
|
|
image=image,
|
|
|
|
|
batch_size=batch_size * num_videos_per_prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
dtype=self.transformer.dtype,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 7. Denoising loop
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
|
if self.interrupt:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
self._current_timestep = t
|
|
|
|
|
latent_model_input = torch.cat([latents, cond_latents_concat, mask_concat], dim=1)
|
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
|
|
|
|
|
|
|
|
|
# Step 1: Collect model inputs needed for the guidance method
|
|
|
|
|
# conditional inputs should always be first element in the tuple
|
|
|
|
|
guider_inputs = {
|
|
|
|
|
"encoder_hidden_states": (prompt_embeds, negative_prompt_embeds),
|
|
|
|
|
"encoder_attention_mask": (prompt_embeds_mask, negative_prompt_embeds_mask),
|
|
|
|
|
"encoder_hidden_states_2": (prompt_embeds_2, negative_prompt_embeds_2),
|
|
|
|
|
"encoder_attention_mask_2": (prompt_embeds_mask_2, negative_prompt_embeds_mask_2),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Step 2: Update guider's internal state for this denoising step
|
|
|
|
|
self.guider.set_state(step=i, num_inference_steps=num_inference_steps, timestep=t)
|
|
|
|
|
|
|
|
|
|
# Step 3: Prepare batched model inputs based on the guidance method
|
|
|
|
|
# The guider splits model inputs into separate batches for conditional/unconditional predictions.
|
|
|
|
|
# For CFG with guider_inputs = {"encoder_hidden_states": (prompt_embeds, negative_prompt_embeds)}:
|
|
|
|
|
# you will get a guider_state with two batches:
|
|
|
|
|
# guider_state = [
|
|
|
|
|
# {"encoder_hidden_states": prompt_embeds, "__guidance_identifier__": "pred_cond"}, # conditional batch
|
|
|
|
|
# {"encoder_hidden_states": negative_prompt_embeds, "__guidance_identifier__": "pred_uncond"}, # unconditional batch
|
|
|
|
|
# ]
|
|
|
|
|
# Other guidance methods may return 1 batch (no guidance) or 3+ batches (e.g., PAG, APG).
|
|
|
|
|
guider_state = self.guider.prepare_inputs(guider_inputs)
|
|
|
|
|
# Step 4: Run the denoiser for each batch
|
|
|
|
|
# Each batch in guider_state represents a different conditioning (conditional, unconditional, etc.).
|
|
|
|
|
# We run the model once per batch and store the noise prediction in guider_state_batch.noise_pred.
|
|
|
|
|
for guider_state_batch in guider_state:
|
|
|
|
|
self.guider.prepare_models(self.transformer)
|
|
|
|
|
|
|
|
|
|
# Extract conditioning kwargs for this batch (e.g., encoder_hidden_states)
|
|
|
|
|
cond_kwargs = {
|
|
|
|
|
input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# e.g. "pred_cond"/"pred_uncond"
|
|
|
|
|
context_name = getattr(guider_state_batch, self.guider._identifier_key)
|
|
|
|
|
with self.transformer.cache_context(context_name):
|
|
|
|
|
# Run denoiser and store noise prediction in this batch
|
|
|
|
|
guider_state_batch.noise_pred = self.transformer(
|
|
|
|
|
hidden_states=latent_model_input,
|
|
|
|
|
image_embeds=image_embeds,
|
|
|
|
|
timestep=timestep,
|
|
|
|
|
attention_kwargs=self.attention_kwargs,
|
|
|
|
|
return_dict=False,
|
|
|
|
|
**cond_kwargs,
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
# Cleanup model (e.g., remove hooks)
|
|
|
|
|
self.guider.cleanup_models(self.transformer)
|
|
|
|
|
|
|
|
|
|
# Step 5: Combine predictions using the guidance method
|
|
|
|
|
# The guider takes all noise predictions from guider_state and combines them according to the guidance algorithm.
|
|
|
|
|
# Continuing the CFG example, the guider receives:
|
|
|
|
|
# guider_state = [
|
|
|
|
|
# {"encoder_hidden_states": prompt_embeds, "noise_pred": noise_pred_cond, "__guidance_identifier__": "pred_cond"}, # batch 0
|
|
|
|
|
# {"encoder_hidden_states": negative_prompt_embeds, "noise_pred": noise_pred_uncond, "__guidance_identifier__": "pred_uncond"}, # batch 1
|
|
|
|
|
# ]
|
|
|
|
|
# And extracts predictions using the __guidance_identifier__:
|
|
|
|
|
# pred_cond = guider_state[0]["noise_pred"] # extracts noise_pred_cond
|
|
|
|
|
# pred_uncond = guider_state[1]["noise_pred"] # extracts noise_pred_uncond
|
|
|
|
|
# Then applies CFG formula:
|
|
|
|
|
# noise_pred = pred_uncond + guidance_scale * (pred_cond - pred_uncond)
|
|
|
|
|
# Returns GuiderOutput(pred=noise_pred, pred_cond=pred_cond, pred_uncond=pred_uncond)
|
|
|
|
|
noise_pred = self.guider(guider_state)[0]
|
|
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
|
latents_dtype = latents.dtype
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
if latents.dtype != latents_dtype:
|
|
|
|
|
if torch.backends.mps.is_available():
|
|
|
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
|
|
|
latents = latents.to(latents_dtype)
|
|
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
|
progress_bar.update()
|
|
|
|
|
|
|
|
|
|
if XLA_AVAILABLE:
|
|
|
|
|
xm.mark_step()
|
|
|
|
|
|
|
|
|
|
self._current_timestep = None
|
|
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
|
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
|
|
|
|
|
video = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
|
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
|
|
|
|
else:
|
|
|
|
|
video = latents
|
|
|
|
|
|
|
|
|
|
# Offload all models
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (video,)
|
|
|
|
|
|
|
|
|
|
return HunyuanVideo15PipelineOutput(frames=video)
|