1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
This commit is contained in:
Nathan Lambert
2022-06-22 14:17:01 -04:00
27 changed files with 405 additions and 156 deletions

View File

@@ -48,7 +48,7 @@ The class provides functionality to compute previous image according to alpha, b
**Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ...
*Examples*: GLIDE, Latent-Diffusion, Imagen, DALL-E 2
*Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2
<p align="center">
<img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/>
@@ -190,7 +190,7 @@ image_pil.save("test.png")
[Diffuser](https://diffusion-planning.github.io/) for planning in reinforcement learning: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TmBmlYeKUZSkUZoJqfBmaicVTKx6nN1R?usp=sharing)
### 2. `diffusers` as a collection of popular Diffusion systems (GLIDE, Dalle, ...)
### 2. `diffusers` as a collection of popular Diffusion systems (Glide, Dalle, ...)
For more examples see [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
@@ -249,24 +249,24 @@ image_pil = PIL.Image.fromarray(image_processed[0])
image_pil.save("test.png")
```
#### **Text to speech with GradTTS and BDDM**
#### **Text to speech with GradTTS and BDDMPipeline**
```python
import torch
from diffusers import BDDM, GradTTS
from diffusers import BDDMPipeline, GradTTSPipeline
torch_device = "cuda"
# load grad tts and bddm pipelines
grad_tts = GradTTS.from_pretrained("fusing/grad-tts-libri-tts")
bddm = BDDM.from_pretrained("fusing/diffwave-vocoder-ljspeech")
grad_tts = GradTTSPipeline.from_pretrained("fusing/grad-tts-libri-tts")
bddm = BDDMPipeline.from_pretrained("fusing/diffwave-vocoder-ljspeech")
text = "Hello world, I missed you so much."
# generate mel spectograms using text
mel_spec = grad_tts(text, torch_device=torch_device)
# generate the speech by passing mel spectograms to BDDM pipeline
# generate the speech by passing mel spectograms to BDDMPipeline pipeline
generator = torch.manual_seed(42)
audio = bddm(mel_spec, generator, torch_device=torch_device)
@@ -278,13 +278,14 @@ wavwrite("generated_audio.wav", sampling_rate, audio.squeeze().cpu().numpy())
## TODO
- Create common API for models [ ]
- Add tests for models [ ]
- Adapt schedulers for training [ ]
- Write google colab for training [ ]
- Write docs / Think about how to structure docs [ ]
- Add tests to circle ci [ ]
- Add [Diffusion LM models](https://arxiv.org/pdf/2205.14217.pdf) [ ]
- Add more vision models [ ]
- Add more speech models [ ]
- Add RL model [ ]
- [ ] Create common API for models
- [ ] Add tests for models
- [ ] Adapt schedulers for training
- [ ] Write google colab for training
- [ ] Write docs / Think about how to structure docs
- [ ] Add tests to circle ci
- [ ] Add [Diffusion LM models](https://arxiv.org/pdf/2205.14217.pdf)
- [ ] Add more vision models
- [ ] Add more speech models
- [ ] Add RL model
- [ ] Add FID and KID metrics

View File

@@ -10,7 +10,7 @@ python -m torch.distributed.launch \
train_unconditional.py \
--dataset="huggan/flowers-102-categories" \
--resolution=64 \
--output_path="flowers-ddpm" \
--output_dir="flowers-ddpm" \
--batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
@@ -34,7 +34,7 @@ python -m torch.distributed.launch \
train_unconditional.py \
--dataset="huggan/pokemon" \
--resolution=64 \
--output_path="pokemon-ddpm" \
--output_dir="pokemon-ddpm" \
--batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \

View File

@@ -0,0 +1,202 @@
import argparse
import os
import torch
import torch.nn.functional as F
import PIL.Image
from accelerate import Accelerator
from datasets import load_dataset
from diffusers import DDPM, DDPMScheduler, UNetLDMModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.modeling_utils import unwrap_model
from diffusers.optimization import get_scheduler
from diffusers.utils import logging
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Lambda,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = logging.get_logger(__name__)
def main(args):
accelerator = Accelerator(mixed_precision=args.mixed_precision)
model = UNetLDMModel(
attention_resolutions=[4, 2, 1],
channel_mult=[1, 2, 4, 4],
context_dim=1280,
conv_resample=True,
dims=2,
dropout=0,
image_size=32,
in_channels=4,
model_channels=320,
num_heads=8,
num_res_blocks=2,
out_channels=4,
resblock_updown=False,
transformer_depth=1,
use_new_attention_order=False,
use_scale_shift_norm=False,
use_spatial_transformer=True,
legacy=False,
)
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Lambda(lambda x: x * 2 - 1),
]
)
dataset = load_dataset(args.dataset, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
# Train!
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size() if is_distributed else 1
total_train_batch_size = args.batch_size * args.gradient_accumulation_steps * world_size
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
for epoch in range(args.num_epochs):
model.train()
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
pbar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
# add noise onto the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
if step % args.gradient_accumulation_steps != 0:
with accelerator.no_sync(model):
output = model(noisy_images, timesteps)
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
else:
output = model(noisy_images, timesteps)
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
pbar.update(1)
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
optimizer.step()
if is_distributed:
torch.distributed.barrier()
# Generate a sample image for visual inspection
if args.local_rank in [-1, 0]:
model.eval()
with torch.no_grad():
pipeline = DDPM(unet=unwrap_model(model), noise_scheduler=noise_scheduler)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
image = pipeline(generator=generator)
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.type(torch.uint8).numpy()
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
test_dir = os.path.join(args.output_dir, "test_samples")
os.makedirs(test_dir, exist_ok=True)
image_pil.save(f"{test_dir}/{epoch:04d}.png")
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
if is_distributed:
torch.distributed.barrier()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories")
parser.add_argument("--output_dir", type=str, default="ddpm-model")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
main(args)

View File

@@ -39,7 +39,7 @@ def main(args):
resamp_with_conv=True,
resolution=args.resolution,
)
noise_scheduler = DDPMScheduler(timesteps=1000)
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
augmentations = Compose(
@@ -93,15 +93,13 @@ def main(args):
pbar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
noisy_images = torch.empty_like(clean_images)
noise_samples = torch.empty_like(clean_images)
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
for idx in range(bsz):
noise = torch.randn(clean_images.shape[1:]).to(clean_images.device)
noise_samples[idx] = noise
noisy_images[idx] = noise_scheduler.forward_step(clean_images[idx], noise, timesteps[idx])
# add noise onto the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
if step % args.gradient_accumulation_steps != 0:
with accelerator.no_sync(model):
@@ -146,7 +144,7 @@ def main(args):
# save image
test_dir = os.path.join(args.output_dir, "test_samples")
os.makedirs(test_dir, exist_ok=True)
image_pil.save(f"{test_dir}/{epoch}.png")
image_pil.save(f"{test_dir}/{epoch:04d}.png")
# save the model
if args.push_to_hub:

View File

@@ -1,8 +1,8 @@
import torch
from torch import nn
from diffusers import ClassifierFreeGuidanceScheduler, DDIMScheduler, GLIDESuperResUNetModel, GLIDETextToImageUNetModel
from diffusers.pipelines.pipeline_glide import GLIDE, CLIPTextModel
from diffusers import ClassifierFreeGuidanceScheduler, DDIMScheduler, GlideSuperResUNetModel, GlideTextToImageUNetModel
from diffusers.pipelines.pipeline_glide import Glide, CLIPTextModel
from transformers import CLIPTextConfig, GPT2Tokenizer
@@ -55,7 +55,7 @@ for layer_idx in range(config.num_hidden_layers):
### Convert the Text-to-Image UNet
text2im_model = GLIDETextToImageUNetModel(
text2im_model = GlideTextToImageUNetModel(
in_channels=3,
model_channels=192,
out_channels=6,
@@ -80,7 +80,7 @@ text_scheduler = ClassifierFreeGuidanceScheduler(timesteps=1000, beta_schedule="
# wget https://openaipublic.blob.core.windows.net/diffusion/dec-2021/upsample.pt
ups_state_dict = torch.load("upsample.pt", map_location="cpu")
superres_model = GLIDESuperResUNetModel(
superres_model = GlideSuperResUNetModel(
in_channels=6,
model_channels=192,
out_channels=6,
@@ -101,7 +101,7 @@ upscale_scheduler = DDIMScheduler(
timesteps=1000, beta_schedule="linear", beta_start=0.0001, beta_end=0.02, tensor_format="pt"
)
glide = GLIDE(
glide = Glide(
text_unet=text2im_model,
text_noise_scheduler=text_scheduler,
text_encoder=model,

View File

@@ -1,7 +1,7 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from .utils import is_transformers_available
from .utils import is_inflect_available, is_transformers_available, is_unidecode_available
__version__ = "0.0.4"
@@ -11,13 +11,19 @@ from .models.unet import UNetModel
from .models.unet_ldm import UNetLDMModel
from .models.unet_rl import TemporalUNet
from .pipeline_utils import DiffusionPipeline
from .pipelines import BDDM, DDIM, DDPM, PNDM
from .pipelines import BDDMPipeline, DDIMPipeline, DDPMPipeline, PNDMPipeline
from .schedulers import DDIMScheduler, DDPMScheduler, GradTTSScheduler, PNDMScheduler, SchedulerMixin
if is_transformers_available():
from .models.unet_glide import GLIDESuperResUNetModel, GLIDETextToImageUNetModel, GLIDEUNetModel
from .models.unet_glide import GlideSuperResUNetModel, GlideTextToImageUNetModel, GlideUNetModel
from .models.unet_grad_tts import UNetGradTTSModel
from .pipelines import GLIDE, GradTTS, LatentDiffusion
from .pipelines import GlidePipeline, LatentDiffusionPipeline
else:
from .utils.dummy_transformers_objects import *
if is_transformers_available() and is_inflect_available() and is_unidecode_available():
from .pipelines import GradTTSPipeline
else:
from .utils.dummy_transformers_and_inflect_and_unidecode_objects import *

View File

@@ -17,7 +17,7 @@
# limitations under the License.
from .unet import UNetModel
from .unet_glide import GLIDESuperResUNetModel, GLIDETextToImageUNetModel, GLIDEUNetModel
from .unet_glide import GlideSuperResUNetModel, GlideTextToImageUNetModel, GlideUNetModel
from .unet_grad_tts import UNetGradTTSModel
from .unet_ldm import UNetLDMModel
from .unet_rl import TemporalUNet

View File

@@ -388,7 +388,7 @@ class QKVAttention(nn.Module):
return a.reshape(bs, -1, length)
class GLIDEUNetModel(ModelMixin, ConfigMixin):
class GlideUNetModel(ModelMixin, ConfigMixin):
"""
The full UNet model with attention and timestep embedding.
@@ -641,7 +641,7 @@ class GLIDEUNetModel(ModelMixin, ConfigMixin):
return self.out(h)
class GLIDETextToImageUNetModel(GLIDEUNetModel):
class GlideTextToImageUNetModel(GlideUNetModel):
"""
A UNetModel that performs super-resolution.
@@ -734,7 +734,7 @@ class GLIDETextToImageUNetModel(GLIDEUNetModel):
return self.out(h)
class GLIDESuperResUNetModel(GLIDEUNetModel):
class GlideSuperResUNetModel(GlideUNetModel):
"""
A UNetModel that performs super-resolution.

View File

@@ -21,7 +21,6 @@ from typing import Optional, Union
from huggingface_hub import snapshot_download
from .configuration_utils import ConfigMixin
from .dynamic_modules_utils import get_class_from_dynamic_module
from .utils import DIFFUSERS_CACHE, logging
@@ -81,16 +80,13 @@ class DiffusionPipeline(ConfigMixin):
# set models
setattr(self, name, module)
register_dict = {"_module": self.__module__.split(".")[-1]}
self.register_to_config(**register_dict)
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
self.save_config(save_directory)
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name")
model_index_dict.pop("_diffusers_version")
model_index_dict.pop("_module")
model_index_dict.pop("_module", None)
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
@@ -139,11 +135,7 @@ class DiffusionPipeline(ConfigMixin):
config_dict = cls.get_config_dict(cached_folder)
# 2. Get class name and module candidates to load custom models
module_candidate_name = config_dict["_module"]
module_candidate = module_candidate_name + ".py"
# 3. Load the pipeline class, if using custom module then load it from the hub
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if cls != DiffusionPipeline:
pipeline_class = cls
@@ -151,11 +143,6 @@ class DiffusionPipeline(ConfigMixin):
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
# (TODO - we should allow to load custom pipelines
# else we need to load the correct module from the Hub
# module = module_candidate
# pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {}
@@ -163,7 +150,7 @@ class DiffusionPipeline(ConfigMixin):
# import it here to avoid circular import
from diffusers import pipelines
# 4. Load each module in the pipeline
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
is_pipeline_module = hasattr(pipelines, library_name)
# if the model is in a pipeline module, then we load it from the pipeline
@@ -171,14 +158,7 @@ class DiffusionPipeline(ConfigMixin):
pipeline_module = getattr(pipelines, library_name)
class_obj = getattr(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
elif library_name == module_candidate_name:
# if the model is not in diffusers or transformers, we need to load it from the hub
# assumes that it's a subclass of ModelMixin
class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
# since it's not from a library, we need to check class candidates for all importable classes
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)

View File

@@ -15,5 +15,5 @@ TODO(Patrick, Anton, Suraj)
- PNDM for unconditional image generation in [pipeline_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py).
- Latent diffusion for text to image generation / conditional image generation in [pipeline_latent_diffusion](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_latent_diffusion.py).
- Glide for text to image generation / conditional image generation in [pipeline_glide](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_glide.py).
- BDDM for spectrogram-to-sound vocoding in [pipeline_bddm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_bddm.py).
- BDDMPipeline for spectrogram-to-sound vocoding in [pipeline_bddm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_bddm.py).
- Grad-TTS for text to audio generation / conditional audio generation in [pipeline_grad_tts](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_grad_tts.py).

View File

@@ -1,11 +1,14 @@
from ..utils import is_transformers_available
from .pipeline_bddm import BDDM
from .pipeline_ddim import DDIM
from .pipeline_ddpm import DDPM
from .pipeline_pndm import PNDM
from ..utils import is_inflect_available, is_transformers_available, is_unidecode_available
from .pipeline_bddm import BDDMPipeline
from .pipeline_ddim import DDIMPipeline
from .pipeline_ddpm import DDPMPipeline
from .pipeline_pndm import PNDMPipeline
if is_transformers_available():
from .pipeline_glide import GLIDE
from .pipeline_grad_tts import GradTTS
from .pipeline_latent_diffusion import LatentDiffusion
from .pipeline_glide import GlidePipeline
from .pipeline_latent_diffusion import LatentDiffusionPipeline
if is_transformers_available() and is_unidecode_available() and is_inflect_available():
from .pipeline_grad_tts import GradTTSPipeline

View File

@@ -6,20 +6,9 @@ from shutil import copyfile
import torch
import inflect
from transformers import PreTrainedTokenizer
try:
from unidecode import unidecode
except:
print("unidecode is not installed")
pass
try:
import inflect
except:
print("inflect is not installed")
pass
from unidecode import unidecode
valid_symbols = [
@@ -234,12 +223,7 @@ def english_cleaners(text):
return text
try:
_inflect = inflect.engine()
except:
print("inflect is not installed")
_inflect = None
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")

View File

@@ -271,7 +271,7 @@ class DiffWave(ModelMixin, ConfigMixin):
return self.final_conv(x)
class BDDM(DiffusionPipeline):
class BDDMPipeline(DiffusionPipeline):
def __init__(self, diffwave, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class DDIM(DiffusionPipeline):
class DDIMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class DDPM(DiffusionPipeline):
class DDPMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@@ -30,7 +30,7 @@ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPo
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, add_start_docstrings_to_model_forward, replace_return_docstrings
from ..models import GLIDESuperResUNetModel, GLIDETextToImageUNetModel
from ..models import GlideSuperResUNetModel, GlideTextToImageUNetModel
from ..pipeline_utils import DiffusionPipeline
from ..schedulers import DDIMScheduler, DDPMScheduler
from ..utils import logging
@@ -694,7 +694,6 @@ class CLIPTextModel(CLIPPreTrainedModel):
# END OF THE CLIP MODEL COPY-PASTE
#####################
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
@@ -711,14 +710,14 @@ def _extract_into_tensor(arr, timesteps, broadcast_shape):
return res + torch.zeros(broadcast_shape, device=timesteps.device)
class GLIDE(DiffusionPipeline):
class GlidePipeline(DiffusionPipeline):
def __init__(
self,
text_unet: GLIDETextToImageUNetModel,
text_unet: GlideTextToImageUNetModel,
text_noise_scheduler: DDPMScheduler,
text_encoder: CLIPTextModel,
tokenizer: GPT2Tokenizer,
upscale_unet: GLIDESuperResUNetModel,
upscale_unet: GlideSuperResUNetModel,
upscale_noise_scheduler: DDIMScheduler,
):
super().__init__()

View File

@@ -420,7 +420,7 @@ class TextEncoder(ModelMixin, ConfigMixin):
return mu, logw, x_mask
class GradTTS(DiffusionPipeline):
class GradTTSPipeline(DiffusionPipeline):
def __init__(self, unet, text_encoder, noise_scheduler, tokenizer):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")
@@ -430,7 +430,14 @@ class GradTTS(DiffusionPipeline):
@torch.no_grad()
def __call__(
self, text, num_inference_steps=50, temperature=1.3, length_scale=0.91, speaker_id=15, torch_device=None
self,
text,
num_inference_steps=50,
temperature=1.3,
length_scale=0.91,
speaker_id=15,
torch_device=None,
generator=None,
):
if torch_device is None:
torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@@ -464,7 +471,7 @@ class GradTTS(DiffusionPipeline):
mu_y = mu_y.transpose(1, 2)
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
z = mu_y + torch.randn(mu_y.shape, device=mu_y.device, generator=generator) / temperature
xt = z * y_mask
h = 1.0 / num_inference_steps

View File

@@ -860,7 +860,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin):
return dec, posterior
class LatentDiffusion(DiffusionPipeline):
class LatentDiffusionPipeline(DiffusionPipeline):
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class PNDM(DiffusionPipeline):
class PNDMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@@ -73,7 +73,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
if beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
elif beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
# Glide cosine schedule
self.betas = betas_for_alpha_bar(timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
@@ -132,7 +132,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
std_dev_t = eta * variance ** (0.5)
if use_clipped_residual:
# the residual is always re-derived from the clipped x_0 in GLIDE
# the residual is always re-derived from the clipped x_0 in Glide
residual = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf

View File

@@ -17,6 +17,7 @@
import math
import numpy as np
import torch
from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin
@@ -76,7 +77,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
elif beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
elif beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
# Glide cosine schedule
self.betas = betas_for_alpha_bar(timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
@@ -108,7 +109,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
elif variance_type == "fixed_large":
variance = self.betas[t]
elif variance_type == "fixed_large_log":
# GLIDE max_log
# Glide max_log
variance = self.log(self.betas[t])
return variance
@@ -142,11 +143,18 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
return pred_prev_sample
def forward_step(self, original_sample, noise, t):
sqrt_alpha_prod = self.alphas_cumprod[t] ** 0.5
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[t]) ** 0.5
noisy_sample = sqrt_alpha_prod * original_sample + sqrt_one_minus_alpha_prod * noise
return noisy_sample
def training_step(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor):
if timesteps.dim() != 1:
raise ValueError("`timesteps` must be a 1D tensor")
device = original_samples.device
batch_size = original_samples.shape[0]
timesteps = timesteps.reshape(batch_size, 1, 1, 1)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
noisy_samples = sqrt_alpha_prod.to(device) * original_samples + sqrt_one_minus_alpha_prod.to(device) * noise
return noisy_samples
def __len__(self):
return self.config.timesteps

View File

@@ -66,7 +66,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
if beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
elif beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
# Glide cosine schedule
self.betas = betas_for_alpha_bar(timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

View File

@@ -45,10 +45,34 @@ except importlib_metadata.PackageNotFoundError:
_transformers_available = False
_inflect_available = importlib.util.find_spec("inflect") is not None
try:
_inflect_version = importlib_metadata.version("inflect")
logger.debug(f"Successfully imported inflect version {_inflect_version}")
except importlib_metadata.PackageNotFoundError:
_inflect_available = False
_unidecode_available = importlib.util.find_spec("unidecode") is not None
try:
_unidecode_version = importlib_metadata.version("unidecode")
logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
except importlib_metadata.PackageNotFoundError:
_unidecode_available = False
def is_transformers_available():
return _transformers_available
def is_inflect_available():
return _inflect_available
def is_unidecode_available():
return _unidecode_available
class RepositoryNotFoundError(HTTPError):
"""
Raised when trying to access a hf.co URL with an invalid repository name, or with a private repo name the user does
@@ -70,9 +94,23 @@ TRANSFORMERS_IMPORT_ERROR = """
"""
UNIDECODE_IMPORT_ERROR = """
{0} requires the unidecode library but it was not found in your environment. You can install it with pip:
`pip install Unidecode`
"""
INFLECT_IMPORT_ERROR = """
{0} requires the inflect library but it was not found in your environment. You can install it with pip:
`pip install inflect`
"""
BACKENDS_MAPPING = OrderedDict(
[
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
]
)

View File

@@ -0,0 +1,10 @@
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa
from ..utils import DummyObject, requires_backends
class GradTTS(metaclass=DummyObject):
_backends = ["transformers", "inflect", "unidecode"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["transformers", "inflect", "unidecode"])

View File

@@ -3,21 +3,21 @@
from ..utils import DummyObject, requires_backends
class GLIDESuperResUNetModel(metaclass=DummyObject):
class GlideSuperResUNetModel(metaclass=DummyObject):
_backends = ["transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["transformers"])
class GLIDETextToImageUNetModel(metaclass=DummyObject):
class GlideTextToImageUNetModel(metaclass=DummyObject):
_backends = ["transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["transformers"])
class GLIDEUNetModel(metaclass=DummyObject):
class GlideUNetModel(metaclass=DummyObject):
_backends = ["transformers"]
def __init__(self, *args, **kwargs):
@@ -31,10 +31,7 @@ class UNetGradTTSModel(metaclass=DummyObject):
requires_backends(self, ["transformers"])
GLIDE = None
class GradTTS(metaclass=DummyObject):
class Glide(metaclass=DummyObject):
_backends = ["transformers"]
def __init__(self, *args, **kwargs):

View File

@@ -21,18 +21,18 @@ import unittest
import numpy as np
import torch
import pytest
from diffusers import (
BDDM,
DDIM,
DDPM,
GLIDE,
PNDM,
BDDMPipeline,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
GLIDESuperResUNetModel,
GLIDETextToImageUNetModel,
LatentDiffusion,
GlidePipeline,
GlideSuperResUNetModel,
GlideTextToImageUNetModel,
GradTTSPipeline,
LatentDiffusionPipeline,
PNDMPipeline,
PNDMScheduler,
UNetGradTTSModel,
UNetLDMModel,
@@ -247,13 +247,13 @@ class UnetModelTests(ModelTesterMixin, unittest.TestCase):
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([ 0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
model_class = GLIDESuperResUNetModel
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
model_class = GlideSuperResUNetModel
@property
def dummy_input(self):
@@ -309,7 +309,7 @@ class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_from_pretrained_hub(self):
model, loading_info = GLIDESuperResUNetModel.from_pretrained(
model, loading_info = GlideSuperResUNetModel.from_pretrained(
"fusing/glide-super-res-dummy", output_loading_info=True
)
self.assertIsNotNone(model)
@@ -321,7 +321,7 @@ class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
torch.manual_seed(0)
if torch.cuda.is_available():
@@ -342,8 +342,8 @@ class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
class GLIDETextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
model_class = GLIDETextToImageUNetModel
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
model_class = GlideTextToImageUNetModel
@property
def dummy_input(self):
@@ -401,7 +401,7 @@ class GLIDETextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_from_pretrained_hub(self):
model, loading_info = GLIDETextToImageUNetModel.from_pretrained(
model, loading_info = GlideTextToImageUNetModel.from_pretrained(
"fusing/unet-glide-text2im-dummy", output_loading_info=True
)
self.assertIsNotNone(model)
@@ -413,7 +413,7 @@ class GLIDETextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = GLIDETextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
torch.manual_seed(0)
if torch.cuda.is_available():
@@ -431,7 +431,7 @@ class GLIDETextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
output, _ = torch.split(output, 3, dim=1)
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([ 2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
@@ -571,7 +571,7 @@ class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase):
output_slice = output[0, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-0.0690, -0.0531, 0.0633, -0.0660, -0.0541, 0.0650, -0.0656, -0.0555, 0.0617])
expected_output_slice = torch.tensor([-0.0690, -0.0531, 0.0633, -0.0660, -0.0541, 0.0650, -0.0656, -0.0555, 0.0617])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
@@ -583,11 +583,11 @@ class PipelineTesterMixin(unittest.TestCase):
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
schedular = DDPMScheduler(timesteps=10)
ddpm = DDPM(model, schedular)
ddpm = DDPMPipeline(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPM.from_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
generator = torch.manual_seed(0)
@@ -601,7 +601,7 @@ class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_hub(self):
model_path = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_path)
ddpm = DDPMPipeline.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.noise_scheduler.num_timesteps = 10
@@ -624,7 +624,7 @@ class PipelineTesterMixin(unittest.TestCase):
noise_scheduler = DDPMScheduler.from_config(model_id)
noise_scheduler = noise_scheduler.set_format("pt")
ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = ddpm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
@@ -641,7 +641,7 @@ class PipelineTesterMixin(unittest.TestCase):
unet = UNetModel.from_pretrained(model_id)
noise_scheduler = DDIMScheduler(tensor_format="pt")
ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = ddim(generator=generator, eta=0.0)
image_slice = image[0, -1, -3:, -3:].cpu()
@@ -660,7 +660,7 @@ class PipelineTesterMixin(unittest.TestCase):
unet = UNetModel.from_pretrained(model_id)
noise_scheduler = PNDMScheduler(tensor_format="pt")
pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = pndm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
@@ -674,7 +674,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow
def test_ldm_text2img(self):
model_id = "fusing/latent-diffusion-text2im-large"
ldm = LatentDiffusion.from_pretrained(model_id)
ldm = LatentDiffusionPipeline.from_pretrained(model_id)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
@@ -689,7 +689,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow
def test_glide_text2img(self):
model_id = "fusing/glide-base"
glide = GLIDE.from_pretrained(model_id)
glide = GlidePipeline.from_pretrained(model_id)
prompt = "a pencil sketch of a corgi"
generator = torch.manual_seed(0)
@@ -701,11 +701,28 @@ class PipelineTesterMixin(unittest.TestCase):
expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_grad_tts(self):
model_id = "fusing/grad-tts-libri-tts"
grad_tts = GradTTSPipeline.from_pretrained(model_id)
text = "Hello world, I missed you so much."
generator = torch.manual_seed(0)
# generate mel spectograms using text
mel_spec = grad_tts(text, generator=generator)
assert mel_spec.shape == (1, 80, 143)
expected_slice = torch.tensor(
[-6.6119, -6.5963, -6.2776, -6.7496, -6.7096, -6.5131, -6.4643, -6.4817, -6.7185]
)
assert (mel_spec[0, :3, :3].flatten() - expected_slice).abs().max() < 1e-2
def test_module_from_pipeline(self):
model = DiffWave(num_res_layers=4)
noise_scheduler = DDPMScheduler(timesteps=12)
bddm = BDDM(model, noise_scheduler)
bddm = BDDMPipeline(model, noise_scheduler)
# check if the library name for the diffwave moduel is set to pipeline module
self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")
@@ -713,6 +730,6 @@ class PipelineTesterMixin(unittest.TestCase):
# check if we can save and load the pipeline
with tempfile.TemporaryDirectory() as tmpdirname:
bddm.save_pretrained(tmpdirname)
_ = BDDM.from_pretrained(tmpdirname)
_ = BDDMPipeline.from_pretrained(tmpdirname)
# check if the same works using the DifusionPipeline class
_ = DiffusionPipeline.from_pretrained(tmpdirname)

View File

@@ -23,10 +23,9 @@ import re
PATH_TO_DIFFUSERS = "src/diffusers"
# Matches is_xxx_available()
_re_backend = re.compile(r"if is\_([a-z_]*)_available\(\)")
_re_backend = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
_re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
_re_test_backend = re.compile(r"^\s+if\s+not\s+is\_[a-z]*\_available\(\)")
DUMMY_CONSTANT = """
@@ -54,7 +53,7 @@ def find_backend(line):
if len(backends) == 0:
return None
return backends[0]
return "_and_".join(backends)
def read_init():