mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Tests] Improve transformers model test suite coverage - Latte (#8919)
* add LatteTransformer3DModel model test * change patch_size to 1 * reduce req len * reduce channel dims * increase num_layers * reduce dims further * run make style --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: Aryan <aryan@huggingface.co>
This commit is contained in:
88
tests/models/transformers/test_models_transformer_latte.py
Normal file
88
tests/models/transformers/test_models_transformer_latte.py
Normal file
@@ -0,0 +1,88 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import LatteTransformer3DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class LatteTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = LatteTransformer3DModel
|
||||
main_input_name = "hidden_states"
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 2
|
||||
num_channels = 4
|
||||
num_frames = 1
|
||||
height = width = 8
|
||||
embedding_dim = 8
|
||||
sequence_length = 8
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"timestep": timestep,
|
||||
"enable_temporal_attentions": True,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (4, 1, 8, 8)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (8, 1, 8, 8)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"sample_size": 8,
|
||||
"num_layers": 1,
|
||||
"patch_size": 2,
|
||||
"attention_head_dim": 4,
|
||||
"num_attention_heads": 2,
|
||||
"caption_channels": 8,
|
||||
"in_channels": 4,
|
||||
"cross_attention_dim": 8,
|
||||
"out_channels": 8,
|
||||
"attention_bias": True,
|
||||
"activation_fn": "gelu-approximate",
|
||||
"num_embeds_ada_norm": 1000,
|
||||
"norm_type": "ada_norm_single",
|
||||
"norm_elementwise_affine": False,
|
||||
"norm_eps": 1e-6,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_output(self):
|
||||
super().test_output(
|
||||
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
|
||||
)
|
||||
Reference in New Issue
Block a user