mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Model Card] standardize T2I Sdxl Lora model card (#6944)
* standardize model card template t2i-lora-sdxl * type annotations
This commit is contained in:
@@ -58,6 +58,7 @@ from diffusers.utils import (
|
||||
convert_unet_state_dict_to_peft,
|
||||
is_wandb_available,
|
||||
)
|
||||
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from diffusers.utils.torch_utils import is_compiled_module
|
||||
|
||||
@@ -70,33 +71,20 @@ logger = get_logger(__name__)
|
||||
|
||||
def save_model_card(
|
||||
repo_id: str,
|
||||
images=None,
|
||||
base_model=str,
|
||||
dataset_name=str,
|
||||
train_text_encoder=False,
|
||||
repo_folder=None,
|
||||
vae_path=None,
|
||||
images: list = None,
|
||||
base_model: str = None,
|
||||
dataset_name: str = None,
|
||||
train_text_encoder: bool = False,
|
||||
repo_folder: str = None,
|
||||
vae_path: str = None,
|
||||
):
|
||||
img_str = ""
|
||||
for i, image in enumerate(images):
|
||||
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
||||
img_str += f"\n"
|
||||
if images is not None:
|
||||
for i, image in enumerate(images):
|
||||
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
||||
img_str += f"\n"
|
||||
|
||||
yaml = f"""
|
||||
---
|
||||
license: creativeml-openrail-m
|
||||
base_model: {base_model}
|
||||
dataset: {dataset_name}
|
||||
tags:
|
||||
- stable-diffusion-xl
|
||||
- stable-diffusion-xl-diffusers
|
||||
- text-to-image
|
||||
- diffusers
|
||||
- lora
|
||||
inference: true
|
||||
---
|
||||
"""
|
||||
model_card = f"""
|
||||
model_description = f"""
|
||||
# LoRA text2image fine-tuning - {repo_id}
|
||||
|
||||
These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n
|
||||
@@ -106,8 +94,19 @@ LoRA for the text encoder was enabled: {train_text_encoder}.
|
||||
|
||||
Special VAE used for training: {vae_path}.
|
||||
"""
|
||||
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
||||
f.write(yaml + model_card)
|
||||
model_card = load_or_create_model_card(
|
||||
repo_id_or_path=repo_id,
|
||||
from_training=True,
|
||||
license="creativeml-openrail-m",
|
||||
base_model=base_model,
|
||||
model_description=model_description,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
tags = ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora"]
|
||||
model_card = populate_model_card(model_card, tags=tags)
|
||||
|
||||
model_card.save(os.path.join(repo_folder, "README.md"))
|
||||
|
||||
|
||||
def import_model_class_from_model_name_or_path(
|
||||
|
||||
Reference in New Issue
Block a user