1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Model Card] standardize T2I Sdxl Lora model card (#6944)

* standardize model card template t2i-lora-sdxl

* type annotations
This commit is contained in:
Piyush Thakur
2024-02-12 11:45:40 +05:30
committed by GitHub
parent 84905ca728
commit e1bdcc7af3

View File

@@ -58,6 +58,7 @@ from diffusers.utils import (
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
@@ -70,33 +71,20 @@ logger = get_logger(__name__)
def save_model_card(
repo_id: str,
images=None,
base_model=str,
dataset_name=str,
train_text_encoder=False,
repo_folder=None,
vae_path=None,
images: list = None,
base_model: str = None,
dataset_name: str = None,
train_text_encoder: bool = False,
repo_folder: str = None,
vae_path: str = None,
):
img_str = ""
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"![img_{i}](./image_{i}.png)\n"
if images is not None:
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"![img_{i}](./image_{i}.png)\n"
yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
dataset: {dataset_name}
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
"""
model_card = f"""
model_description = f"""
# LoRA text2image fine-tuning - {repo_id}
These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n
@@ -106,8 +94,19 @@ LoRA for the text encoder was enabled: {train_text_encoder}.
Special VAE used for training: {vae_path}.
"""
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="creativeml-openrail-m",
base_model=base_model,
model_description=model_description,
inference=True,
)
tags = ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora"]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def import_model_class_from_model_name_or_path(