mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
rename to step
This commit is contained in:
@@ -58,7 +58,7 @@ for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_s
|
||||
residual = unet(image, t)
|
||||
|
||||
# predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t)
|
||||
pred_prev_image = noise_scheduler.step(residual, image, t)
|
||||
|
||||
# optionally sample variance
|
||||
variance = 0
|
||||
@@ -109,7 +109,7 @@ for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_ste
|
||||
residual = unet(image, orig_t)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
|
||||
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
|
||||
@@ -58,7 +58,7 @@ class DDIM(DiffusionPipeline):
|
||||
residual = self.unet(image, inference_step_times[t])
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = self.noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
|
||||
pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
|
||||
@@ -45,7 +45,7 @@ class DDPM(DiffusionPipeline):
|
||||
residual = self.unet(image, t)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = self.noise_scheduler.compute_prev_image_step(residual, image, t)
|
||||
pred_prev_image = self.noise_scheduler.step(residual, image, t)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
|
||||
@@ -75,7 +75,7 @@ class LatentDiffusion(DiffusionPipeline):
|
||||
pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = self.noise_scheduler.compute_prev_image_step(pred_noise_t, image, t, num_inference_steps, eta)
|
||||
pred_prev_image = self.noise_scheduler.step(pred_noise_t, image, t, num_inference_steps, eta)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
|
||||
@@ -100,7 +100,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def compute_prev_image_step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
|
||||
def step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ SAMPLING_CONFIG_NAME = "scheduler_config.json"
|
||||
|
||||
|
||||
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
config_name = SAMPLING_CONFIG_NAME
|
||||
|
||||
def __init__(
|
||||
@@ -108,7 +107,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def compute_prev_image_step(self, residual, image, t, output_pred_x_0=False):
|
||||
def step(self, residual, image, t, output_pred_x_0=False):
|
||||
# 1. compute alphas, betas
|
||||
alpha_prod_t = self.get_alpha_prod(t)
|
||||
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
|
||||
|
||||
352
tests/test_ddim_scheduler.py
Executable file
352
tests/test_ddim_scheduler.py
Executable file
@@ -0,0 +1,352 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import unittest
|
||||
from distutils.util import strtobool
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import GaussianDDPMScheduler, UNetModel, DDIMScheduler
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from models.vision.ddim.modeling_ddim import DDIM
|
||||
from models.vision.ddpm.modeling_ddpm import DDPM
|
||||
from models.vision.latent_diffusion.modeling_latent_diffusion import LatentDiffusion
|
||||
|
||||
global_rng = random.Random()
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
def parse_flag_from_env(key, default=False):
|
||||
try:
|
||||
value = os.environ[key]
|
||||
except KeyError:
|
||||
# KEY isn't set, default to `default`.
|
||||
_value = default
|
||||
else:
|
||||
# KEY is set, convert it to True or False.
|
||||
try:
|
||||
_value = strtobool(value)
|
||||
except ValueError:
|
||||
# More values are supported, but let's keep the message simple.
|
||||
raise ValueError(f"If set, {key} must be yes or no.")
|
||||
return _value
|
||||
|
||||
|
||||
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
|
||||
|
||||
|
||||
def slow(test_case):
|
||||
"""
|
||||
Decorator marking a test as slow.
|
||||
|
||||
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
|
||||
|
||||
"""
|
||||
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
|
||||
|
||||
|
||||
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
||||
"""Creates a random float32 tensor"""
|
||||
if rng is None:
|
||||
rng = global_rng
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.random() * scale)
|
||||
|
||||
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
|
||||
|
||||
|
||||
class ConfigTester(unittest.TestCase):
|
||||
def test_load_not_from_mixin(self):
|
||||
with self.assertRaises(ValueError):
|
||||
ConfigMixin.from_config("dummy_path")
|
||||
|
||||
def test_save_load(self):
|
||||
class SampleObject(ConfigMixin):
|
||||
config_name = "config.json"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
a=2,
|
||||
b=5,
|
||||
c=(2, 5),
|
||||
d="for diffusion",
|
||||
e=[1, 3],
|
||||
):
|
||||
self.register(a=a, b=b, c=c, d=d, e=e)
|
||||
|
||||
obj = SampleObject()
|
||||
config = obj.config
|
||||
|
||||
assert config["a"] == 2
|
||||
assert config["b"] == 5
|
||||
assert config["c"] == (2, 5)
|
||||
assert config["d"] == "for diffusion"
|
||||
assert config["e"] == [1, 3]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
obj.save_config(tmpdirname)
|
||||
new_obj = SampleObject.from_config(tmpdirname)
|
||||
new_config = new_obj.config
|
||||
|
||||
assert config.pop("c") == (2, 5) # instantiated as tuple
|
||||
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
|
||||
assert config == new_config
|
||||
|
||||
|
||||
class ModelTesterMixin(unittest.TestCase):
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 4
|
||||
num_channels = 3
|
||||
sizes = (32, 32)
|
||||
|
||||
noise = floats_tensor((batch_size, num_channels) + sizes)
|
||||
time_step = torch.tensor([10])
|
||||
|
||||
return (noise, time_step)
|
||||
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
model.save_pretrained(tmpdirname)
|
||||
new_model = UNetModel.from_pretrained(tmpdirname)
|
||||
|
||||
dummy_input = self.dummy_input
|
||||
|
||||
image = model(*dummy_input)
|
||||
new_image = new_model(*dummy_input)
|
||||
|
||||
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
|
||||
|
||||
def test_from_pretrained_hub(self):
|
||||
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
|
||||
|
||||
image = model(*self.dummy_input)
|
||||
|
||||
assert image is not None, "Make sure output is not None"
|
||||
|
||||
|
||||
class SamplerTesterMixin(unittest.TestCase):
|
||||
@slow
|
||||
def test_sample(self):
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
# 1. Load models
|
||||
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
|
||||
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
||||
|
||||
# 2. Sample gaussian noise
|
||||
image = scheduler.sample_noise(
|
||||
(1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator
|
||||
)
|
||||
|
||||
# 3. Denoise
|
||||
for t in reversed(range(len(scheduler))):
|
||||
# i) define coefficients for time step t
|
||||
clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
|
||||
clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
|
||||
image_coeff = (
|
||||
(1 - scheduler.get_alpha_prod(t - 1))
|
||||
* torch.sqrt(scheduler.get_alpha(t))
|
||||
/ (1 - scheduler.get_alpha_prod(t))
|
||||
)
|
||||
clipped_coeff = (
|
||||
torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
|
||||
)
|
||||
|
||||
# ii) predict noise residual
|
||||
with torch.no_grad():
|
||||
noise_residual = model(image, t)
|
||||
|
||||
# iii) compute predicted image from residual
|
||||
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
||||
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
|
||||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||||
prev_image = clipped_coeff * pred_mean + image_coeff * image
|
||||
|
||||
# iv) sample variance
|
||||
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
|
||||
|
||||
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
||||
sampled_prev_image = prev_image + prev_variance
|
||||
image = sampled_prev_image
|
||||
|
||||
# Note: The better test is to simply check with the following lines of code that the image is sensible
|
||||
# import PIL
|
||||
# import numpy as np
|
||||
# image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
# image_processed = (image_processed + 1.0) * 127.5
|
||||
# image_processed = image_processed.numpy().astype(np.uint8)
|
||||
# image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
# image_pil.save("test.png")
|
||||
|
||||
assert image.shape == (1, 3, 256, 256)
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
expected_slice = torch.tensor(
|
||||
[-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280]
|
||||
)
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
def test_sample_fast(self):
|
||||
# 1. Load models
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
|
||||
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
||||
|
||||
# 2. Sample gaussian noise
|
||||
image = scheduler.sample_noise(
|
||||
(1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator
|
||||
)
|
||||
|
||||
# 3. Denoise
|
||||
for t in reversed(range(len(scheduler))):
|
||||
# i) define coefficients for time step t
|
||||
clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
|
||||
clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
|
||||
image_coeff = (
|
||||
(1 - scheduler.get_alpha_prod(t - 1))
|
||||
* torch.sqrt(scheduler.get_alpha(t))
|
||||
/ (1 - scheduler.get_alpha_prod(t))
|
||||
)
|
||||
clipped_coeff = (
|
||||
torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
|
||||
)
|
||||
|
||||
# ii) predict noise residual
|
||||
with torch.no_grad():
|
||||
noise_residual = model(image, t)
|
||||
|
||||
# iii) compute predicted image from residual
|
||||
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
||||
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
|
||||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||||
prev_image = clipped_coeff * pred_mean + image_coeff * image
|
||||
|
||||
# iv) sample variance
|
||||
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
|
||||
|
||||
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
||||
sampled_prev_image = prev_image + prev_variance
|
||||
image = sampled_prev_image
|
||||
|
||||
assert image.shape == (1, 3, 256, 256)
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
|
||||
class PipelineTesterMixin(unittest.TestCase):
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
# 1. Load models
|
||||
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
|
||||
schedular = GaussianDDPMScheduler(timesteps=10)
|
||||
|
||||
ddpm = DDPM(model, schedular)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
ddpm.save_pretrained(tmpdirname)
|
||||
new_ddpm = DDPM.from_pretrained(tmpdirname)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
image = ddpm(generator=generator)
|
||||
generator = generator.manual_seed(0)
|
||||
new_image = new_ddpm(generator=generator)
|
||||
|
||||
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
|
||||
|
||||
@slow
|
||||
def test_from_pretrained_hub(self):
|
||||
model_path = "fusing/ddpm-cifar10"
|
||||
|
||||
ddpm = DDPM.from_pretrained(model_path)
|
||||
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
|
||||
|
||||
ddpm.noise_scheduler.num_timesteps = 10
|
||||
ddpm_from_hub.noise_scheduler.num_timesteps = 10
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
image = ddpm(generator=generator)
|
||||
generator = generator.manual_seed(0)
|
||||
new_image = ddpm_from_hub(generator=generator)
|
||||
|
||||
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
|
||||
|
||||
@slow
|
||||
def test_ddpm_cifar10(self):
|
||||
generator = torch.manual_seed(0)
|
||||
model_id = "fusing/ddpm-cifar10"
|
||||
|
||||
unet = UNetModel.from_pretrained(model_id)
|
||||
noise_scheduler = GaussianDDPMScheduler.from_config(model_id)
|
||||
|
||||
ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
|
||||
image = ddpm(generator=generator)
|
||||
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
|
||||
assert image.shape == (1, 3, 32, 32)
|
||||
expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
@slow
|
||||
def test_ddim_cifar10(self):
|
||||
generator = torch.manual_seed(0)
|
||||
model_id = "fusing/ddpm-cifar10"
|
||||
|
||||
unet = UNetModel.from_pretrained(model_id)
|
||||
noise_scheduler = DDIMScheduler()
|
||||
|
||||
ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
|
||||
image = ddim(generator=generator, eta=0.0)
|
||||
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
|
||||
assert image.shape == (1, 3, 32, 32)
|
||||
expected_slice = torch.tensor(
|
||||
[-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
|
||||
)
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
@slow
|
||||
def test_ldm_text2img(self):
|
||||
model_id = "fusing/latent-diffusion-text2im-large"
|
||||
ldm = LatentDiffusion.from_pretrained(model_id)
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
image = ldm([prompt], generator=generator, num_inference_steps=20)
|
||||
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
print(image_slice.shape)
|
||||
|
||||
assert image.shape == (1, 3, 256, 256)
|
||||
expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
113
tests/test_ddpm_scheduler.py
Executable file
113
tests/test_ddpm_scheduler.py
Executable file
@@ -0,0 +1,113 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import unittest
|
||||
import numpy as np
|
||||
from distutils.util import strtobool
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import GaussianDDPMScheduler, UNetModel, DDIMScheduler
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from models.vision.ddim.modeling_ddim import DDIM
|
||||
from models.vision.ddpm.modeling_ddpm import DDPM
|
||||
from models.vision.latent_diffusion.modeling_latent_diffusion import LatentDiffusion
|
||||
|
||||
global_rng = random.Random()
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
def parse_flag_from_env(key, default=False):
|
||||
try:
|
||||
value = os.environ[key]
|
||||
except KeyError:
|
||||
# KEY isn't set, default to `default`.
|
||||
_value = default
|
||||
else:
|
||||
# KEY is set, convert it to True or False.
|
||||
try:
|
||||
_value = strtobool(value)
|
||||
except ValueError:
|
||||
# More values are supported, but let's keep the message simple.
|
||||
raise ValueError(f"If set, {key} must be yes or no.")
|
||||
return _value
|
||||
|
||||
|
||||
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
|
||||
|
||||
|
||||
def slow(test_case):
|
||||
"""
|
||||
Decorator marking a test as slow.
|
||||
|
||||
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
|
||||
|
||||
"""
|
||||
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
|
||||
|
||||
|
||||
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
||||
"""Creates a random float32 tensor"""
|
||||
if rng is None:
|
||||
rng = global_rng
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.random() * scale)
|
||||
|
||||
return np.random.randn(data=values, dtype=torch.float).view(shape).contiguous()
|
||||
|
||||
|
||||
class SchedulerCommonTest(unittest.TestCase):
|
||||
|
||||
scheduler_class = None
|
||||
|
||||
@property
|
||||
def dummy_image(self):
|
||||
batch_size = 4
|
||||
num_channels = 3
|
||||
height = 8
|
||||
width = 8
|
||||
|
||||
image = np.random.rand(batch_size, num_channels, height, width)
|
||||
|
||||
return image
|
||||
|
||||
def get_scheduler_config(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def dummy_model(self):
|
||||
def model(image, residual, t, *args):
|
||||
return (image + residual) * t / (t + 1)
|
||||
|
||||
return model
|
||||
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = self.scheduler_class(scheduler_config())
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_pretrained(tmpdirname)
|
||||
new_scheduler = self.scheduler_class.from_config(tmpdirname)
|
||||
Reference in New Issue
Block a user