mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
revert dual attn
This commit is contained in:
@@ -225,173 +225,6 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
|
||||
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
|
||||
class DualTransformer2DModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
|
||||
embeddings) inputs.
|
||||
|
||||
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
|
||||
transformer action. Finally, reshape to image.
|
||||
|
||||
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
|
||||
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
|
||||
classes of unnoised image.
|
||||
|
||||
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
|
||||
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
|
||||
|
||||
Parameters:
|
||||
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
||||
in_channels (`int`, *optional*):
|
||||
Pass if the input is continuous. The number of channels in the input and output.
|
||||
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
||||
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
||||
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
|
||||
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
||||
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
||||
`ImagePositionalEmbeddings`.
|
||||
num_vector_embeds (`int`, *optional*):
|
||||
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
||||
Includes the class for the masked latent pixel.
|
||||
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
||||
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
||||
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
||||
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
||||
up to but not more than steps than `num_embeds_ada_norm`.
|
||||
attention_bias (`bool`, *optional*):
|
||||
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int = 16,
|
||||
attention_head_dim: int = 88,
|
||||
in_channels: Optional[int] = None,
|
||||
num_layers: int = 1,
|
||||
dropout: float = 0.0,
|
||||
norm_num_groups: int = 32,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
attention_bias: bool = False,
|
||||
activation_fn: str = "geglu",
|
||||
num_embeds_ada_norm: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
# 1. DualTransformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
||||
# Define whether input is continuous or discrete depending on configuration
|
||||
self.is_input_continuous = in_channels is not None
|
||||
|
||||
# 2. Define input layers
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm_0 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
self.proj_in_0 = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
||||
self.norm_1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
self.proj_in_1 = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
# 3. Define transformers blocks
|
||||
self.transformer_blocks_0 = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
dropout=dropout,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
activation_fn=activation_fn,
|
||||
num_embeds_ada_norm=num_embeds_ada_norm,
|
||||
attention_bias=attention_bias,
|
||||
)
|
||||
for d in range(num_layers)
|
||||
]
|
||||
)
|
||||
self.transformer_blocks_1 = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
dropout=dropout,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
activation_fn=activation_fn,
|
||||
num_embeds_ada_norm=num_embeds_ada_norm,
|
||||
attention_bias=attention_bias,
|
||||
)
|
||||
for d in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# 4. Define output layers
|
||||
self.proj_out_0 = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out_1 = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def _set_attention_slice(self, slice_size):
|
||||
for block in self.transformer_blocks:
|
||||
block._set_attention_slice(slice_size)
|
||||
|
||||
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
||||
"""
|
||||
Args:
|
||||
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
||||
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
||||
hidden_states
|
||||
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
|
||||
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
||||
self-attention.
|
||||
timestep ( `torch.long`, *optional*):
|
||||
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
|
||||
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
|
||||
tensor.
|
||||
"""
|
||||
# 1. Input
|
||||
if self.is_input_continuous:
|
||||
batch, channel, height, weight = hidden_states.shape
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
inner_dim = hidden_states.shape[1]
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
||||
elif self.is_input_vectorized:
|
||||
hidden_states = self.latent_image_embedding(hidden_states)
|
||||
|
||||
# 2. Blocks
|
||||
for block in self.transformer_blocks:
|
||||
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
|
||||
|
||||
# 3. Output
|
||||
if self.is_input_continuous:
|
||||
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
output = hidden_states + residual
|
||||
elif self.is_input_vectorized:
|
||||
hidden_states = self.norm_out(hidden_states)
|
||||
logits = self.out(hidden_states)
|
||||
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
||||
logits = logits.permute(0, 2, 1)
|
||||
|
||||
# log(p(x_0))
|
||||
output = F.log_softmax(logits.double(), dim=1).float()
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for block in self.transformer_blocks:
|
||||
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
||||
|
||||
@@ -15,7 +15,7 @@ import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .attention import AttentionBlock, Transformer2DModel, DualTransformer2DModel
|
||||
from .attention import AttentionBlock, Transformer2DModel
|
||||
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
|
||||
|
||||
|
||||
@@ -75,22 +75,6 @@ def get_down_block(
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=attn_num_head_channels,
|
||||
)
|
||||
elif down_block_type == "DualCrossAttnDownBlock2D":
|
||||
if cross_attention_dim is None:
|
||||
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
||||
return DualCrossAttnDownBlock2D(
|
||||
num_layers=num_layers,
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=temb_channels,
|
||||
add_downsample=add_downsample,
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
downsample_padding=downsample_padding,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=attn_num_head_channels,
|
||||
)
|
||||
elif down_block_type == "SkipDownBlock2D":
|
||||
return SkipDownBlock2D(
|
||||
num_layers=num_layers,
|
||||
@@ -183,22 +167,6 @@ def get_up_block(
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=attn_num_head_channels,
|
||||
)
|
||||
elif up_block_type == "DualCrossAttnUpBlock2D":
|
||||
if cross_attention_dim is None:
|
||||
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
||||
return DualCrossAttnUpBlock2D(
|
||||
num_layers=num_layers,
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
prev_output_channel=prev_output_channel,
|
||||
temb_channels=temb_channels,
|
||||
add_upsample=add_upsample,
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=attn_num_head_channels,
|
||||
)
|
||||
elif up_block_type == "AttnUpBlock2D":
|
||||
return AttnUpBlock2D(
|
||||
num_layers=num_layers,
|
||||
@@ -436,103 +404,6 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class UNetMidBlock2DDualCrossAttn(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
temb_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
attn_num_head_channels=1,
|
||||
attention_type="default",
|
||||
output_scale_factor=1.0,
|
||||
cross_attention_dim=1280,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.attention_type = attention_type
|
||||
self.attn_num_head_channels = attn_num_head_channels
|
||||
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||||
|
||||
# there is always at least one resnet
|
||||
resnets = [
|
||||
ResnetBlock2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
temb_channels=temb_channels,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
]
|
||||
attentions = []
|
||||
|
||||
for _ in range(num_layers):
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
attn_num_head_channels,
|
||||
in_channels // attn_num_head_channels,
|
||||
in_channels=in_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
norm_num_groups=resnet_groups,
|
||||
)
|
||||
)
|
||||
resnets.append(
|
||||
ResnetBlock2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
temb_channels=temb_channels,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
)
|
||||
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
def set_attention_slice(self, slice_size):
|
||||
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
||||
raise ValueError(
|
||||
f"Make sure slice_size {slice_size} is a divisor of "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
||||
raise ValueError(
|
||||
f"Chunk_size {slice_size} has to be smaller or equal to "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
hidden_states = self.resnets[0](hidden_states, temb)
|
||||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||||
hidden_states = attn(hidden_states, encoder_hidden_states).sample
|
||||
hidden_states = resnet(hidden_states, temb)
|
||||
|
||||
return hidden_states
|
||||
|
||||
class AttnDownBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -736,127 +607,6 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
class DualCrossAttnDownBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
temb_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
attn_num_head_channels=1,
|
||||
cross_attention_dim=1280,
|
||||
attention_type="default",
|
||||
output_scale_factor=1.0,
|
||||
downsample_padding=1,
|
||||
add_downsample=True,
|
||||
):
|
||||
super().__init__()
|
||||
resnets = []
|
||||
attentions = []
|
||||
|
||||
self.attention_type = attention_type
|
||||
self.attn_num_head_channels = attn_num_head_channels
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
resnets.append(
|
||||
ResnetBlock2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=temb_channels,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
attn_num_head_channels,
|
||||
out_channels // attn_num_head_channels,
|
||||
in_channels=out_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
norm_num_groups=resnet_groups,
|
||||
)
|
||||
)
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
if add_downsample:
|
||||
self.downsamplers = nn.ModuleList(
|
||||
[
|
||||
Downsample2D(
|
||||
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
||||
)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.downsamplers = None
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def set_attention_slice(self, slice_size):
|
||||
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
||||
raise ValueError(
|
||||
f"Make sure slice_size {slice_size} is a divisor of "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
||||
raise ValueError(
|
||||
f"Chunk_size {slice_size} has to be smaller or equal to "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
||||
output_states = ()
|
||||
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb)
|
||||
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
||||
|
||||
output_states += (hidden_states,)
|
||||
|
||||
if self.downsamplers is not None:
|
||||
for downsampler in self.downsamplers:
|
||||
hidden_states = downsampler(hidden_states)
|
||||
|
||||
output_states += (hidden_states,)
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
|
||||
class DownBlock2D(nn.Module):
|
||||
def __init__(
|
||||
@@ -1446,132 +1196,6 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DualCrossAttnUpBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
prev_output_channel: int,
|
||||
temb_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
attn_num_head_channels=1,
|
||||
cross_attention_dim=1280,
|
||||
attention_type="default",
|
||||
output_scale_factor=1.0,
|
||||
add_upsample=True,
|
||||
):
|
||||
super().__init__()
|
||||
resnets = []
|
||||
attentions = []
|
||||
|
||||
self.attention_type = attention_type
|
||||
self.attn_num_head_channels = attn_num_head_channels
|
||||
|
||||
for i in range(num_layers):
|
||||
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
||||
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
||||
|
||||
resnets.append(
|
||||
ResnetBlock2D(
|
||||
in_channels=resnet_in_channels + res_skip_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=temb_channels,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
attn_num_head_channels,
|
||||
out_channels // attn_num_head_channels,
|
||||
in_channels=out_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
norm_num_groups=resnet_groups,
|
||||
)
|
||||
)
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
if add_upsample:
|
||||
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
||||
else:
|
||||
self.upsamplers = None
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def set_attention_slice(self, slice_size):
|
||||
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
||||
raise ValueError(
|
||||
f"Make sure slice_size {slice_size} is a divisor of "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
||||
raise ValueError(
|
||||
f"Chunk_size {slice_size} has to be smaller or equal to "
|
||||
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
||||
)
|
||||
|
||||
for attn in self.attentions:
|
||||
attn._set_attention_slice(slice_size)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
for attn in self.attentions:
|
||||
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
res_hidden_states_tuple,
|
||||
temb=None,
|
||||
encoder_hidden_states=None,
|
||||
upsample_size=None,
|
||||
):
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||||
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb)
|
||||
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
||||
|
||||
if self.upsamplers is not None:
|
||||
for upsampler in self.upsamplers:
|
||||
hidden_states = upsampler(hidden_states, upsample_size)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class UpBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -27,7 +27,6 @@ from .unet_2d_blocks import (
|
||||
CrossAttnUpBlock2D,
|
||||
DownBlock2D,
|
||||
UNetMidBlock2DCrossAttn,
|
||||
UNetMidBlock2DDualCrossAttn,
|
||||
UpBlock2D,
|
||||
get_down_block,
|
||||
get_up_block,
|
||||
@@ -150,8 +149,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
||||
self.down_blocks.append(down_block)
|
||||
|
||||
# mid
|
||||
# TODO: temporary, need to add get_mid_block()
|
||||
self.mid_block = UNetMidBlock2DDualCrossAttn(
|
||||
self.mid_block = UNetMidBlock2DCrossAttn(
|
||||
in_channels=block_out_channels[-1],
|
||||
temb_channels=time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
|
||||
Reference in New Issue
Block a user