mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -68,6 +68,7 @@ from diffusers.utils import (
|
||||
is_wandb_available,
|
||||
)
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from diffusers.utils.torch_utils import is_compiled_module
|
||||
|
||||
|
||||
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
||||
@@ -1293,6 +1294,11 @@ def main(args):
|
||||
else:
|
||||
param.requires_grad = False
|
||||
|
||||
def unwrap_model(model):
|
||||
model = accelerator.unwrap_model(model)
|
||||
model = model._orig_mod if is_compiled_module(model) else model
|
||||
return model
|
||||
|
||||
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
||||
def save_model_hook(models, weights, output_dir):
|
||||
if accelerator.is_main_process:
|
||||
@@ -1303,14 +1309,14 @@ def main(args):
|
||||
text_encoder_two_lora_layers_to_save = None
|
||||
|
||||
for model in models:
|
||||
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
||||
if isinstance(model, type(unwrap_model(unet))):
|
||||
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
|
||||
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
||||
elif isinstance(model, type(unwrap_model(text_encoder_one))):
|
||||
if args.train_text_encoder:
|
||||
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
|
||||
get_peft_model_state_dict(model)
|
||||
)
|
||||
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
||||
elif isinstance(model, type(unwrap_model(text_encoder_two))):
|
||||
if args.train_text_encoder:
|
||||
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
|
||||
get_peft_model_state_dict(model)
|
||||
@@ -1338,11 +1344,11 @@ def main(args):
|
||||
while len(models) > 0:
|
||||
model = models.pop()
|
||||
|
||||
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
||||
if isinstance(model, type(unwrap_model(unet))):
|
||||
unet_ = model
|
||||
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
||||
elif isinstance(model, type(unwrap_model(text_encoder_one))):
|
||||
text_encoder_one_ = model
|
||||
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
||||
elif isinstance(model, type(unwrap_model(text_encoder_two))):
|
||||
text_encoder_two_ = model
|
||||
else:
|
||||
raise ValueError(f"unexpected save model: {model.__class__}")
|
||||
|
||||
Reference in New Issue
Block a user