mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
fix: Fixed type annotations for compatability with python 3.8 (#7648)
* Fixed type annotations for compatability with python 3.8 * Add required imports.
This commit is contained in:
@@ -151,7 +151,7 @@ def concat_first(feat: torch.Tensor, dim: int = 2, scale: float = 1.0) -> torch.
|
||||
return torch.cat((feat, feat_style), dim=dim)
|
||||
|
||||
|
||||
def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
|
||||
feat_mean = feat.mean(dim=-2, keepdims=True)
|
||||
return feat_mean, feat_std
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
import inspect
|
||||
from collections.abc import Callable
|
||||
from typing import Any, List, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
@@ -1211,8 +1211,8 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, list[str]]] = None,
|
||||
prompt_2: Optional[Union[str, list[str]]] = None,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
|
||||
mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
|
||||
adapter_image: PipelineImageInput = None,
|
||||
@@ -1224,11 +1224,11 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
||||
denoising_start: Optional[float] = None,
|
||||
denoising_end: Optional[float] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: Optional[Union[str, list[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, list[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[Union[torch.FloatTensor]] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
@@ -1238,12 +1238,12 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
cross_attention_kwargs: Optional[dict[str, Any]] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
guidance_rescale: float = 0.0,
|
||||
original_size: Optional[tuple[int, int]] = None,
|
||||
crops_coords_top_left: Optional[tuple[int, int]] = (0, 0),
|
||||
target_size: Optional[tuple[int, int]] = None,
|
||||
adapter_conditioning_scale: Optional[Union[float, list[float]]] = 1.0,
|
||||
original_size: Optional[Tuple[int, int]] = None,
|
||||
crops_coords_top_left: Optional[Tuple[int, int]] = (0, 0),
|
||||
target_size: Optional[Tuple[int, int]] = None,
|
||||
adapter_conditioning_scale: Optional[Union[float, List[float]]] = 1.0,
|
||||
cond_tau: float = 1.0,
|
||||
aesthetic_score: float = 6.0,
|
||||
negative_aesthetic_score: float = 2.5,
|
||||
|
||||
@@ -637,7 +637,7 @@ def _filter2d(input, kernel):
|
||||
|
||||
height, width = tmp_kernel.shape[-2:]
|
||||
|
||||
padding_shape: list[int] = _compute_padding([height, width])
|
||||
padding_shape: List[int] = _compute_padding([height, width])
|
||||
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
||||
|
||||
# kernel and input tensor reshape to align element-wise or batch-wise params
|
||||
|
||||
Reference in New Issue
Block a user