1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

SD3 IP-Adapter runtime checkpoint conversion (#10718)

* Added runtime checkpoint conversion

* Updated docs

* Fix for quantized model
This commit is contained in:
Daniel Regado
2025-02-20 20:35:57 +00:00
committed by GitHub
parent 454f82e6fc
commit d9ee3879b0
2 changed files with 130 additions and 51 deletions

View File

@@ -77,7 +77,7 @@ from diffusers import StableDiffusion3Pipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "guiyrt/InstantX-SD3.5-Large-IP-Adapter-diffusers"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id,

View File

@@ -11,16 +11,143 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import nullcontext
from typing import Dict
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0
from ..models.embeddings import IPAdapterTimeImageProjection
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
from ..utils import is_accelerate_available, is_torch_version, logging
logger = logging.get_logger(__name__)
class SD3Transformer2DLoadersMixin:
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""
def _convert_ip_adapter_attn_to_diffusers(
self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
) -> Dict:
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
# IP-Adapter cross attention parameters
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
timesteps_emb_dim = state_dict["0.norm_ip.linear.weight"].shape[1]
# Dict where key is transformer layer index, value is attention processor's state dict
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
for key, weights in state_dict.items():
idx, name = key.split(".", maxsplit=1)
layer_state_dict[int(idx)][name] = weights
# Create IP-Adapter attention processor & load state_dict
attn_procs = {}
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
for idx, name in enumerate(self.attn_processors.keys()):
with init_context():
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
hidden_size=hidden_size,
ip_hidden_states_dim=ip_hidden_states_dim,
head_dim=self.config.attention_head_dim,
timesteps_emb_dim=timesteps_emb_dim,
)
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
else:
load_model_dict_into_meta(
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype
)
return attn_procs
def _convert_ip_adapter_image_proj_to_diffusers(
self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
) -> IPAdapterTimeImageProjection:
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
# Convert to diffusers
updated_state_dict = {}
for key, value in state_dict.items():
# InstantX/SD3.5-Large-IP-Adapter
if key.startswith("layers."):
idx = key.split(".")[1]
key = key.replace(f"layers.{idx}.0.norm1", f"layers.{idx}.ln0")
key = key.replace(f"layers.{idx}.0.norm2", f"layers.{idx}.ln1")
key = key.replace(f"layers.{idx}.0.to_q", f"layers.{idx}.attn.to_q")
key = key.replace(f"layers.{idx}.0.to_kv", f"layers.{idx}.attn.to_kv")
key = key.replace(f"layers.{idx}.0.to_out", f"layers.{idx}.attn.to_out.0")
key = key.replace(f"layers.{idx}.1.0", f"layers.{idx}.adaln_norm")
key = key.replace(f"layers.{idx}.1.1", f"layers.{idx}.ff.net.0.proj")
key = key.replace(f"layers.{idx}.1.3", f"layers.{idx}.ff.net.2")
key = key.replace(f"layers.{idx}.2.1", f"layers.{idx}.adaln_proj")
updated_state_dict[key] = value
# Image projetion parameters
embed_dim = updated_state_dict["proj_in.weight"].shape[1]
output_dim = updated_state_dict["proj_out.weight"].shape[0]
hidden_dim = updated_state_dict["proj_in.weight"].shape[0]
heads = updated_state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
num_queries = updated_state_dict["latents"].shape[1]
timestep_in_dim = updated_state_dict["time_embedding.linear_1.weight"].shape[1]
# Image projection
with init_context():
image_proj = IPAdapterTimeImageProjection(
embed_dim=embed_dim,
output_dim=output_dim,
hidden_dim=hidden_dim,
heads=heads,
num_queries=num_queries,
timestep_in_dim=timestep_in_dim,
)
if not low_cpu_mem_usage:
image_proj.load_state_dict(updated_state_dict, strict=True)
else:
load_model_dict_into_meta(image_proj, updated_state_dict, device=self.device, dtype=self.dtype)
return image_proj
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None:
"""Sets IP-Adapter attention processors, image projection, and loads state_dict.
@@ -34,56 +161,8 @@ class SD3Transformer2DLoadersMixin:
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# IP-Adapter cross attention parameters
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
timesteps_emb_dim = state_dict["ip_adapter"]["0.norm_ip.linear.weight"].shape[1]
# Dict where key is transformer layer index, value is attention processor's state dict
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
for key, weights in state_dict["ip_adapter"].items():
idx, name = key.split(".", maxsplit=1)
layer_state_dict[int(idx)][name] = weights
# Create IP-Adapter attention processor
attn_procs = {}
for idx, name in enumerate(self.attn_processors.keys()):
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
hidden_size=hidden_size,
ip_hidden_states_dim=ip_hidden_states_dim,
head_dim=self.config.attention_head_dim,
timesteps_emb_dim=timesteps_emb_dim,
).to(self.device, dtype=self.dtype)
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
else:
load_model_dict_into_meta(
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype
)
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dict["ip_adapter"], low_cpu_mem_usage)
self.set_attn_processor(attn_procs)
# Image projetion parameters
embed_dim = state_dict["image_proj"]["proj_in.weight"].shape[1]
output_dim = state_dict["image_proj"]["proj_out.weight"].shape[0]
hidden_dim = state_dict["image_proj"]["proj_in.weight"].shape[0]
heads = state_dict["image_proj"]["layers.0.attn.to_q.weight"].shape[0] // 64
num_queries = state_dict["image_proj"]["latents"].shape[1]
timestep_in_dim = state_dict["image_proj"]["time_embedding.linear_1.weight"].shape[1]
# Image projection
self.image_proj = IPAdapterTimeImageProjection(
embed_dim=embed_dim,
output_dim=output_dim,
hidden_dim=hidden_dim,
heads=heads,
num_queries=num_queries,
timestep_in_dim=timestep_in_dim,
).to(device=self.device, dtype=self.dtype)
if not low_cpu_mem_usage:
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
else:
load_model_dict_into_meta(self.image_proj, state_dict["image_proj"], device=self.device, dtype=self.dtype)
self.image_proj = self._convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"], low_cpu_mem_usage)