mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
update slg docstring
This commit is contained in:
@@ -26,23 +26,18 @@ class SkipLayerGuidance(GuidanceMixin):
|
||||
"""
|
||||
Skip Layer Guidance (SLG): https://github.com/Stability-AI/sd3.5
|
||||
|
||||
CFG is a technique used to improve generation quality and condition-following in diffusion models. It works by
|
||||
jointly training a model on both conditional and unconditional data, and using a weighted sum of the two during
|
||||
inference. This allows the model to tradeoff between generation quality and sample diversity.
|
||||
SLG was introduced by StabilityAI for improving structure and anotomy coherence in generated images. It works by
|
||||
skipping the forward pass of specified transformer blocks during the denoising process on an additional conditional
|
||||
batch of data, apart from the conditional and unconditional batches already used in CFG
|
||||
([~guiders.classifier_free_guidance.ClassifierFreeGuidance]), and then scaling and shifting the CFG predictions
|
||||
based on the difference between conditional without skipping and conditional with skipping predictions.
|
||||
|
||||
The original paper proposes scaling and shifting the conditional distribution based on the difference between
|
||||
conditional and unconditional predictions. [x_pred = x_cond + scale * (x_cond - x_uncond)]
|
||||
The intution behind SLG can be thought of as moving the CFG predicted distribution estimates further away from
|
||||
worse versions of the conditional distribution estimates (because skipping layers is equivalent to using a worse
|
||||
version of the model for the conditional prediction).
|
||||
|
||||
Diffusers implemented the scaling and shifting on the unconditional prediction instead, which is equivalent to what
|
||||
the original paper proposed in theory. [x_pred = x_uncond + scale * (x_cond - x_uncond)]
|
||||
|
||||
The intution behind the original formulation can be thought of as moving the conditional distribution estimates
|
||||
further away from the unconditional distribution estimates, while the diffusers-native implementation can be
|
||||
thought of as moving the unconditional distribution towards the conditional distribution estimates to get rid of
|
||||
the unconditional predictions (usually negative features like "bad quality, bad anotomy, watermarks", etc.)
|
||||
|
||||
The `use_original_formulation` argument can be set to `True` to use the original CFG formulation mentioned in the
|
||||
paper. By default, we use the diffusers-native implementation that has been in the codebase for a long time.
|
||||
Additional reading:
|
||||
- [Guiding a Diffusion Model with a Bad Version of Itself](https://huggingface.co/papers/2406.02507)
|
||||
|
||||
Args:
|
||||
guidance_scale (`float`, defaults to `7.5`):
|
||||
|
||||
Reference in New Issue
Block a user