mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Advanced LoRA v1.5] fix: gradient unscaling problem (#7018)
fix: gradient unscaling problem Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
This commit is contained in:
@@ -39,7 +39,7 @@ from accelerate.logging import get_logger
|
||||
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from packaging import version
|
||||
from peft import LoraConfig
|
||||
from peft import LoraConfig, set_peft_model_state_dict
|
||||
from peft.utils import get_peft_model_state_dict
|
||||
from PIL import Image
|
||||
from PIL.ImageOps import exif_transpose
|
||||
@@ -59,12 +59,13 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.loaders import StableDiffusionLoraLoaderMixin
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.training_utils import compute_snr
|
||||
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
|
||||
from diffusers.utils import (
|
||||
check_min_version,
|
||||
convert_all_state_dict_to_peft,
|
||||
convert_state_dict_to_diffusers,
|
||||
convert_state_dict_to_kohya,
|
||||
convert_unet_state_dict_to_peft,
|
||||
is_wandb_available,
|
||||
)
|
||||
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
||||
@@ -1319,6 +1320,37 @@ def main(args):
|
||||
else:
|
||||
raise ValueError(f"unexpected save model: {model.__class__}")
|
||||
|
||||
lora_state_dict, network_alphas = StableDiffusionPipeline.lora_state_dict(input_dir)
|
||||
|
||||
unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
|
||||
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
|
||||
incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
|
||||
if incompatible_keys is not None:
|
||||
# check only for unexpected keys
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
logger.warning(
|
||||
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
||||
f" {unexpected_keys}. "
|
||||
)
|
||||
|
||||
if args.train_text_encoder:
|
||||
# Do we need to call `scale_lora_layers()` here?
|
||||
_set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)
|
||||
|
||||
_set_state_dict_into_text_encoder(
|
||||
lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_one_
|
||||
)
|
||||
|
||||
# Make sure the trainable params are in float32. This is again needed since the base models
|
||||
# are in `weight_dtype`. More details:
|
||||
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
|
||||
if args.mixed_precision == "fp16":
|
||||
models = [unet_]
|
||||
if args.train_text_encoder:
|
||||
models.extend([text_encoder_one_])
|
||||
# only upcast trainable parameters (LoRA) into fp32
|
||||
cast_training_params(models)
|
||||
lora_state_dict, network_alphas = StableDiffusionLoraLoaderMixin.lora_state_dict(input_dir)
|
||||
StableDiffusionLoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user