mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[LoRA deprecation] handle rest of the stuff related to deprecated lora stuff. (#6426)
* handle rest of the stuff related to deprecated lora stuff. * fix: copies * don't modify the uNet in-place. * fix: temporal autoencoder. * manually remove lora layers. * don't copy unet. * alright * remove lora attn processors from unet3d * fix: unet3d. * styl * Empty-Commit
This commit is contained in:
@@ -494,9 +494,7 @@ class ControlNetXSModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
return self.control_model.attn_processors
|
||||
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -509,7 +507,7 @@ class ControlNetXSModel(ModelMixin, ConfigMixin):
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
self.control_model.set_attn_processor(processor, _remove_lora)
|
||||
self.control_model.set_attn_processor(processor)
|
||||
|
||||
def set_default_attn_processor(self):
|
||||
"""
|
||||
|
||||
@@ -980,7 +980,7 @@ class LoraLoaderMixin:
|
||||
|
||||
if not USE_PEFT_BACKEND:
|
||||
if version.parse(__version__) > version.parse("0.23"):
|
||||
logger.warn(
|
||||
logger.warning(
|
||||
"You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
|
||||
"you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
|
||||
)
|
||||
|
||||
@@ -373,29 +373,14 @@ class Attention(nn.Module):
|
||||
|
||||
self.set_processor(processor)
|
||||
|
||||
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None:
|
||||
def set_processor(self, processor: "AttnProcessor") -> None:
|
||||
r"""
|
||||
Set the attention processor to use.
|
||||
|
||||
Args:
|
||||
processor (`AttnProcessor`):
|
||||
The attention processor to use.
|
||||
_remove_lora (`bool`, *optional*, defaults to `False`):
|
||||
Set to `True` to remove LoRA layers from the model.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
|
||||
deprecate(
|
||||
"set_processor to offload LoRA",
|
||||
"0.26.0",
|
||||
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
||||
)
|
||||
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
||||
# We need to remove all LoRA layers
|
||||
# Don't forget to remove ALL `_remove_lora` from the codebase
|
||||
for module in self.modules():
|
||||
if hasattr(module, "set_lora_layer"):
|
||||
module.set_lora_layer(None)
|
||||
|
||||
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
||||
# pop `processor` from `self._modules`
|
||||
if (
|
||||
|
||||
@@ -182,9 +182,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -208,9 +206,9 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -232,7 +230,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
|
||||
@@ -267,9 +267,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -293,9 +291,9 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -314,7 +312,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
|
||||
@@ -212,9 +212,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -238,9 +236,9 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -262,7 +260,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
|
||||
@@ -534,9 +534,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -560,9 +558,9 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -584,7 +582,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
||||
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
||||
|
||||
@@ -192,9 +192,7 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -218,9 +216,9 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -242,7 +240,7 @@ class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -643,9 +643,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
|
||||
return processors
|
||||
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -669,9 +667,9 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -692,7 +690,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def set_attention_slice(self, slice_size):
|
||||
r"""
|
||||
|
||||
@@ -375,9 +375,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -401,9 +399,9 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -465,7 +463,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
||||
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
||||
|
||||
@@ -549,9 +549,7 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -575,9 +573,9 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -641,7 +639,7 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
||||
if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)):
|
||||
|
||||
@@ -237,9 +237,7 @@ class UVit2DModel(ModelMixin, ConfigMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -263,9 +261,9 @@ class UVit2DModel(ModelMixin, ConfigMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -287,7 +285,7 @@ class UVit2DModel(ModelMixin, ConfigMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
|
||||
class UVit2DConvEmbed(nn.Module):
|
||||
|
||||
@@ -538,9 +538,7 @@ class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoad
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -564,9 +562,9 @@ class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoad
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -588,7 +586,7 @@ class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoad
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
||||
def set_attention_slice(self, slice_size):
|
||||
|
||||
@@ -848,9 +848,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
||||
|
||||
return processors
|
||||
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -874,9 +872,9 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -897,7 +895,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def set_attention_slice(self, slice_size):
|
||||
r"""
|
||||
|
||||
@@ -91,9 +91,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(
|
||||
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
||||
):
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
@@ -117,9 +115,9 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor, _remove_lora=_remove_lora)
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
@@ -141,7 +139,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||||
)
|
||||
|
||||
self.set_attn_processor(processor, _remove_lora=True)
|
||||
self.set_attn_processor(processor)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
self.gradient_checkpointing = value
|
||||
|
||||
@@ -61,7 +61,8 @@ from diffusers.utils.testing_utils import (
|
||||
)
|
||||
|
||||
|
||||
def text_encoder_attn_modules(text_encoder):
|
||||
def text_encoder_attn_modules(text_encoder: nn.Module):
|
||||
"""Fetches the attention modules from `text_encoder`."""
|
||||
attn_modules = []
|
||||
|
||||
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
|
||||
@@ -75,7 +76,8 @@ def text_encoder_attn_modules(text_encoder):
|
||||
return attn_modules
|
||||
|
||||
|
||||
def text_encoder_lora_state_dict(text_encoder):
|
||||
def text_encoder_lora_state_dict(text_encoder: nn.Module):
|
||||
"""Returns the LoRA state dict of the `text_encoder`. Assumes that `_modify_text_encoder()` was already called on it."""
|
||||
state_dict = {}
|
||||
|
||||
for name, module in text_encoder_attn_modules(text_encoder):
|
||||
@@ -95,6 +97,8 @@ def text_encoder_lora_state_dict(text_encoder):
|
||||
|
||||
|
||||
def create_unet_lora_layers(unet: nn.Module, rank=4, mock_weights=True):
|
||||
"""Creates and returns the LoRA state dict for the UNet."""
|
||||
# So that we accidentally don't end up using the in-place modified UNet.
|
||||
unet_lora_parameters = []
|
||||
|
||||
for attn_processor_name, attn_processor in unet.attn_processors.items():
|
||||
@@ -145,10 +149,17 @@ def create_unet_lora_layers(unet: nn.Module, rank=4, mock_weights=True):
|
||||
unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters())
|
||||
unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters())
|
||||
|
||||
return unet_lora_parameters, unet_lora_state_dict(unet)
|
||||
unet_lora_sd = unet_lora_state_dict(unet)
|
||||
# Unload LoRA.
|
||||
for module in unet.modules():
|
||||
if hasattr(module, "set_lora_layer"):
|
||||
module.set_lora_layer(None)
|
||||
|
||||
return unet_lora_parameters, unet_lora_sd
|
||||
|
||||
|
||||
def create_3d_unet_lora_layers(unet: nn.Module, rank=4, mock_weights=True):
|
||||
"""Creates and returns the LoRA state dict for the 3D UNet."""
|
||||
for attn_processor_name in unet.attn_processors.keys():
|
||||
has_cross_attention = attn_processor_name.endswith("attn2.processor") and not (
|
||||
attn_processor_name.startswith("transformer_in") or "temp_attentions" in attn_processor_name.split(".")
|
||||
@@ -216,10 +227,18 @@ def create_3d_unet_lora_layers(unet: nn.Module, rank=4, mock_weights=True):
|
||||
attn_module.to_v.lora_layer.up.weight += 1
|
||||
attn_module.to_out[0].lora_layer.up.weight += 1
|
||||
|
||||
return unet_lora_state_dict(unet)
|
||||
unet_lora_sd = unet_lora_state_dict(unet)
|
||||
|
||||
# Unload LoRA.
|
||||
for module in unet.modules():
|
||||
if hasattr(module, "set_lora_layer"):
|
||||
module.set_lora_layer(None)
|
||||
|
||||
return unet_lora_sd
|
||||
|
||||
|
||||
def set_lora_weights(lora_attn_parameters, randn_weight=False, var=1.0):
|
||||
"""Randomizes the LoRA params if specified."""
|
||||
if not isinstance(lora_attn_parameters, dict):
|
||||
with torch.no_grad():
|
||||
for parameter in lora_attn_parameters:
|
||||
@@ -1441,6 +1460,7 @@ class SDXLLoraLoaderMixinTests(unittest.TestCase):
|
||||
class UNet2DConditionLoRAModelTests(unittest.TestCase):
|
||||
model_class = UNet2DConditionModel
|
||||
main_input_name = "sample"
|
||||
lora_rank = 4
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
@@ -1489,7 +1509,7 @@ class UNet2DConditionLoRAModelTests(unittest.TestCase):
|
||||
with torch.no_grad():
|
||||
sample1 = model(**inputs_dict).sample
|
||||
|
||||
_, lora_params = create_unet_lora_layers(model)
|
||||
_, lora_params = create_unet_lora_layers(model, rank=self.lora_rank)
|
||||
|
||||
# make sure we can set a list of attention processors
|
||||
model.load_attn_procs(lora_params)
|
||||
@@ -1522,13 +1542,16 @@ class UNet2DConditionLoRAModelTests(unittest.TestCase):
|
||||
with torch.no_grad():
|
||||
old_sample = model(**inputs_dict).sample
|
||||
|
||||
_, lora_params = create_unet_lora_layers(model)
|
||||
_, lora_params = create_unet_lora_layers(model, rank=self.lora_rank)
|
||||
model.load_attn_procs(lora_params)
|
||||
|
||||
with torch.no_grad():
|
||||
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
|
||||
|
||||
model.set_default_attn_processor()
|
||||
# Unload LoRA.
|
||||
for module in model.modules():
|
||||
if hasattr(module, "set_lora_layer"):
|
||||
module.set_lora_layer(None)
|
||||
|
||||
with torch.no_grad():
|
||||
new_sample = model(**inputs_dict).sample
|
||||
@@ -1552,7 +1575,7 @@ class UNet2DConditionLoRAModelTests(unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
model = self.model_class(**init_dict)
|
||||
model.to(torch_device)
|
||||
_, lora_params = create_unet_lora_layers(model)
|
||||
_, lora_params = create_unet_lora_layers(model, rank=self.lora_rank)
|
||||
model.load_attn_procs(lora_params)
|
||||
|
||||
# default
|
||||
|
||||
Reference in New Issue
Block a user