1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

new test case

This commit is contained in:
Chong
2023-08-23 19:33:09 +08:00
parent 8ba5c7600e
commit d5933c2603

View File

@@ -46,24 +46,34 @@ class AdapterTests:
def get_dummy_components(self, adapter_type):
torch.manual_seed(0)
if adapter_type == 'light_adapter':
channels = [32, 32, 32]
else:
channels = [32, 32, 32, 32]
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
block_out_channels=[32, 32, 32, 32],
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
down_block_types=(
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
up_block_types= ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
block_out_channels=[32, 32, 32, 32],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
@@ -84,7 +94,7 @@ class AdapterTests:
torch.manual_seed(0)
adapter = T2IAdapter(
in_channels=3,
channels=[320, 640, 1280, 1280],
channels=channels,
num_res_blocks=2,
downscale_factor=8,
adapter_type=adapter_type,