mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-26 05:21:40 +03:00
Improve docstrings and type hints in scheduling_ddim_inverse.py (#13020)
docs: improve docstring scheduling_ddim_inverse.py
This commit is contained in:
@@ -99,7 +99,7 @@ def betas_for_alpha_bar(
|
||||
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||||
def rescale_zero_terminal_snr(betas):
|
||||
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||||
|
||||
@@ -187,14 +187,14 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: str = "epsilon",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
clip_sample_range: float = 1.0,
|
||||
timestep_spacing: str = "leading",
|
||||
timestep_spacing: Literal["leading", "trailing"] = "leading",
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -210,7 +210,15 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -256,7 +264,11 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -308,20 +320,10 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
timestep (`int`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
eta (`float`):
|
||||
The weight of noise for added noise in diffusion step.
|
||||
use_clipped_model_output (`bool`, defaults to `False`):
|
||||
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
||||
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
||||
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
||||
`use_clipped_model_output` has no effect.
|
||||
variance_noise (`torch.Tensor`):
|
||||
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
||||
itself. Useful for methods such as [`CycleDiffusion`].
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or
|
||||
`tuple`.
|
||||
@@ -335,7 +337,8 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
# 1. get previous step value (=t+1)
|
||||
prev_timestep = timestep
|
||||
timestep = min(
|
||||
timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1
|
||||
timestep - self.config.num_train_timesteps // self.num_inference_steps,
|
||||
self.config.num_train_timesteps - 1,
|
||||
)
|
||||
|
||||
# 2. compute alphas, betas
|
||||
@@ -378,5 +381,5 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
return (prev_sample, pred_original_sample)
|
||||
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
Reference in New Issue
Block a user