mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Fix prepare latent image ids and vae sample generators for flux (#9981)
* fix * update expected slice
This commit is contained in:
@@ -513,7 +513,7 @@ class FluxPipeline(
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
|
||||
@@ -97,6 +97,20 @@ def calculate_shift(
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
@@ -512,7 +526,7 @@ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleF
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
@@ -772,7 +786,7 @@ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleF
|
||||
controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
|
||||
if self.controlnet.input_hint_block is None:
|
||||
# vae encode
|
||||
control_image = self.vae.encode(control_image).latent_dist.sample()
|
||||
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
||||
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# pack
|
||||
@@ -810,7 +824,7 @@ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleF
|
||||
|
||||
if self.controlnet.nets[0].input_hint_block is None:
|
||||
# vae encode
|
||||
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
|
||||
control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
|
||||
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# pack
|
||||
|
||||
@@ -801,7 +801,7 @@ class FluxControlNetImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
)
|
||||
height, width = control_image.shape[-2:]
|
||||
|
||||
control_image = self.vae.encode(control_image).latent_dist.sample()
|
||||
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
||||
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
height_control_image, width_control_image = control_image.shape[2:]
|
||||
@@ -832,7 +832,7 @@ class FluxControlNetImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
)
|
||||
height, width = control_image_.shape[-2:]
|
||||
|
||||
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
|
||||
control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
|
||||
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
height_control_image, width_control_image = control_image_.shape[2:]
|
||||
|
||||
@@ -942,7 +942,7 @@ class FluxControlNetInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
|
||||
if self.controlnet.input_hint_block is None:
|
||||
# vae encode
|
||||
control_image = self.vae.encode(control_image).latent_dist.sample()
|
||||
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
||||
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# pack
|
||||
@@ -979,7 +979,7 @@ class FluxControlNetInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, From
|
||||
|
||||
if self.controlnet.nets[0].input_hint_block is None:
|
||||
# vae encode
|
||||
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
|
||||
control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
|
||||
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# pack
|
||||
|
||||
@@ -170,7 +170,7 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
assert image.shape == (1, 32, 32, 3)
|
||||
|
||||
expected_slice = np.array(
|
||||
[0.7348633, 0.41333008, 0.6621094, 0.5444336, 0.47607422, 0.5859375, 0.44677734, 0.4506836, 0.40454102]
|
||||
[0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156]
|
||||
)
|
||||
|
||||
assert (
|
||||
|
||||
Reference in New Issue
Block a user