1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

add GradTTSScheduler

This commit is contained in:
patil-suraj
2022-06-16 17:10:36 +02:00
parent 2d8d82f93e
commit cc45831ec6
3 changed files with 54 additions and 1 deletions

View File

@@ -11,5 +11,5 @@ from .models.unet_ldm import UNetLDMModel
from .models.unet_grad_tts import UNetGradTTSModel
from .pipeline_utils import DiffusionPipeline
from .pipelines import DDIM, DDPM, GLIDE, LatentDiffusion, PNDM, BDDM
from .schedulers import DDIMScheduler, DDPMScheduler, SchedulerMixin, PNDMScheduler
from .schedulers import DDIMScheduler, DDPMScheduler, SchedulerMixin, PNDMScheduler, GradTTSScheduler
from .schedulers.classifier_free_guidance import ClassifierFreeGuidanceScheduler

View File

@@ -20,4 +20,5 @@ from .classifier_free_guidance import ClassifierFreeGuidanceScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_grad_tts import GradTTSScheduler
from .scheduling_utils import SchedulerMixin

View File

@@ -0,0 +1,52 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin
class GradTTSScheduler(SchedulerMixin, ConfigMixin):
def __init__(
self,
timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
tensor_format="np",
):
super().__init__()
self.register(
timesteps=timesteps,
beta_start=beta_start,
beta_end=beta_end,
)
self.timesteps = int(timesteps)
self.set_format(tensor_format=tensor_format)
def sample_noise(self, timestep):
noise = self.beta_start + (self.beta_end - self.beta_start) * timestep
return noise
def step(self, xt, residual, mu, h, timestep):
noise_t = self.sample_noise(timestep)
dxt = 0.5 * (mu - xt - residual)
dxt = dxt * noise_t * h
xt = xt - dxt
return xt
def __len__(self):
return self.timesteps