mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[wan2.2] follow-up (#12024)
* up --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
@@ -324,7 +324,7 @@ class WanTimeTextImageEmbedding(nn.Module):
|
||||
):
|
||||
timestep = self.timesteps_proj(timestep)
|
||||
if timestep_seq_len is not None:
|
||||
timestep = timestep.unflatten(0, (1, timestep_seq_len))
|
||||
timestep = timestep.unflatten(0, (-1, timestep_seq_len))
|
||||
|
||||
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
|
||||
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
|
||||
|
||||
@@ -125,15 +125,15 @@ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->transformer_2->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
_optional_components = ["transformer_2"]
|
||||
_optional_components = ["transformer", "transformer_2"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: AutoTokenizer,
|
||||
text_encoder: UMT5EncoderModel,
|
||||
transformer: WanTransformer3DModel,
|
||||
vae: AutoencoderKLWan,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
transformer: Optional[WanTransformer3DModel] = None,
|
||||
transformer_2: Optional[WanTransformer3DModel] = None,
|
||||
boundary_ratio: Optional[float] = None,
|
||||
expand_timesteps: bool = False, # Wan2.2 ti2v
|
||||
@@ -526,7 +526,7 @@ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
device=device,
|
||||
)
|
||||
|
||||
transformer_dtype = self.transformer.dtype
|
||||
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
|
||||
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
||||
if negative_prompt_embeds is not None:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
||||
@@ -536,7 +536,11 @@ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
num_channels_latents = (
|
||||
self.transformer.config.in_channels
|
||||
if self.transformer is not None
|
||||
else self.transformer_2.config.in_channels
|
||||
)
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
num_channels_latents,
|
||||
|
||||
@@ -162,17 +162,17 @@ class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->transformer_2->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
_optional_components = ["transformer_2", "image_encoder", "image_processor"]
|
||||
_optional_components = ["transformer", "transformer_2", "image_encoder", "image_processor"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: AutoTokenizer,
|
||||
text_encoder: UMT5EncoderModel,
|
||||
transformer: WanTransformer3DModel,
|
||||
vae: AutoencoderKLWan,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
image_processor: CLIPImageProcessor = None,
|
||||
image_encoder: CLIPVisionModel = None,
|
||||
transformer: WanTransformer3DModel = None,
|
||||
transformer_2: WanTransformer3DModel = None,
|
||||
boundary_ratio: Optional[float] = None,
|
||||
expand_timesteps: bool = False,
|
||||
@@ -669,12 +669,13 @@ class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
)
|
||||
|
||||
# Encode image embedding
|
||||
transformer_dtype = self.transformer.dtype
|
||||
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
|
||||
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
||||
if negative_prompt_embeds is not None:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
||||
|
||||
if self.config.boundary_ratio is None and not self.config.expand_timesteps:
|
||||
# only wan 2.1 i2v transformer accepts image_embeds
|
||||
if self.transformer is not None and self.transformer.config.image_dim is not None:
|
||||
if image_embeds is None:
|
||||
if last_image is None:
|
||||
image_embeds = self.encode_image(image, device)
|
||||
@@ -709,6 +710,7 @@ class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
last_image,
|
||||
)
|
||||
if self.config.expand_timesteps:
|
||||
# wan 2.2 5b i2v use firt_frame_mask to mask timesteps
|
||||
latents, condition, first_frame_mask = latents_outputs
|
||||
else:
|
||||
latents, condition = latents_outputs
|
||||
|
||||
@@ -13,8 +13,10 @@
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
@@ -85,29 +87,13 @@ class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer_2 = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": transformer_2,
|
||||
"transformer_2": None,
|
||||
}
|
||||
return components
|
||||
|
||||
@@ -155,6 +141,45 @@ class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
# _optional_components include transformer, transformer_2, but only transformer_2 is optional for this wan2.1 t2v pipeline
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = "transformer_2"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
components[optional_component] = None
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_accelerator
|
||||
|
||||
367
tests/pipelines/wan/test_wan_22.py
Normal file
367
tests/pipelines/wan/test_wan_22.py
Normal file
@@ -0,0 +1,367 @@
|
||||
# Copyright 2025 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanPipeline, WanTransformer3DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class Wan22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = WanPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer_2 = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": transformer_2,
|
||||
"boundary_ratio": 0.875,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "negative",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"height": 16,
|
||||
"width": 16,
|
||||
"num_frames": 9,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(
|
||||
**components,
|
||||
)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.4525, 0.452, 0.4485, 0.4534, 0.4524, 0.4529, 0.454, 0.453, 0.5127, 0.5326, 0.5204, 0.5253, 0.5439, 0.5424, 0.5133, 0.5078])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = "transformer"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
components[optional_component] = None
|
||||
components["boundary_ratio"] = 1.0 # for wan 2.2 14B, transformer is not used when boundary_ratio is 1.0
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, "transformer") is None,
|
||||
"`transformer` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
|
||||
class Wan225BPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = WanPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=48,
|
||||
in_channels=12,
|
||||
out_channels=12,
|
||||
is_residual=True,
|
||||
patch_size=2,
|
||||
latents_mean=[0.0] * 48,
|
||||
latents_std=[1.0] * 48,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
scale_factor_spatial=16,
|
||||
scale_factor_temporal=4,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=48,
|
||||
out_channels=48,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": None,
|
||||
"boundary_ratio": None,
|
||||
"expand_timesteps": True,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "negative", # TODO
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"num_frames": 9,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(
|
||||
**components,
|
||||
)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([[[0.4814, 0.4298, 0.5094, 0.4289, 0.5061, 0.4301, 0.5043, 0.4284, 0.5375,
|
||||
0.5965, 0.5527, 0.6014, 0.5228, 0.6076, 0.6644, 0.5651]]])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(
|
||||
torch.allclose(generated_slice, expected_slice, atol=1e-3),
|
||||
f"generated_slice: {generated_slice}, expected_slice: {expected_slice}",
|
||||
)
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_components_function(self):
|
||||
init_components = self.get_dummy_components()
|
||||
init_components.pop("boundary_ratio")
|
||||
init_components.pop("expand_timesteps")
|
||||
pipe = self.pipeline_class(**init_components)
|
||||
|
||||
self.assertTrue(hasattr(pipe, "components"))
|
||||
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
|
||||
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = "transformer_2"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
components[optional_component] = None
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
||||
392
tests/pipelines/wan/test_wan_22_image_to_video.py
Normal file
392
tests/pipelines/wan/test_wan_22_image_to_video.py
Normal file
@@ -0,0 +1,392 @@
|
||||
# Copyright 2025 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = WanImageToVideoPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=36,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer_2 = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=36,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": transformer_2,
|
||||
"image_encoder": None,
|
||||
"image_processor": None,
|
||||
"boundary_ratio": 0.875,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
image_height = 16
|
||||
image_width = 16
|
||||
image = Image.new("RGB", (image_width, image_height))
|
||||
inputs = {
|
||||
"image": image,
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "negative", # TODO
|
||||
"height": image_height,
|
||||
"width": image_width,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"num_frames": 9,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(
|
||||
**components,
|
||||
)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.4527, 0.4526, 0.4498, 0.4539, 0.4521, 0.4524, 0.4533, 0.4535, 0.5154,
|
||||
0.5353, 0.5200, 0.5174, 0.5434, 0.5301, 0.5199, 0.5216])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(
|
||||
torch.allclose(generated_slice, expected_slice, atol=1e-3),
|
||||
f"generated_slice: {generated_slice}, expected_slice: {expected_slice}",
|
||||
)
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = ["transformer", "image_encoder", "image_processor"]
|
||||
|
||||
components = self.get_dummy_components()
|
||||
for component in optional_component:
|
||||
components[component] = None
|
||||
components["boundary_ratio"] = 1.0 # for wan 2.2 14B, transformer is not used when boundary_ratio is 1.0
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
for component in optional_component:
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, component) is None,
|
||||
f"`{component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
|
||||
class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = WanImageToVideoPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=48,
|
||||
in_channels=12,
|
||||
out_channels=12,
|
||||
is_residual=True,
|
||||
patch_size=2,
|
||||
latents_mean=[0.0] * 48,
|
||||
latents_std=[1.0] * 48,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
scale_factor_spatial=16,
|
||||
scale_factor_temporal=4,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=48,
|
||||
out_channels=48,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer_2": None,
|
||||
"image_encoder": None,
|
||||
"image_processor": None,
|
||||
"boundary_ratio": None,
|
||||
"expand_timesteps": True,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
image_height = 32
|
||||
image_width = 32
|
||||
image = Image.new("RGB", (image_width, image_height))
|
||||
inputs = {
|
||||
"image": image,
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "negative", # TODO
|
||||
"height": image_height,
|
||||
"width": image_width,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"num_frames": 9,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(
|
||||
**components,
|
||||
)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([[0.4833, 0.4305, 0.5100, 0.4299, 0.5056, 0.4298, 0.5052, 0.4332, 0.5550,
|
||||
0.6092, 0.5536, 0.5928, 0.5199, 0.5864, 0.6705, 0.5493]])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(
|
||||
torch.allclose(generated_slice, expected_slice, atol=1e-3),
|
||||
f"generated_slice: {generated_slice}, expected_slice: {expected_slice}",
|
||||
)
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_components_function(self):
|
||||
init_components = self.get_dummy_components()
|
||||
init_components.pop("boundary_ratio")
|
||||
init_components.pop("expand_timesteps")
|
||||
pipe = self.pipeline_class(**init_components)
|
||||
|
||||
self.assertTrue(hasattr(pipe, "components"))
|
||||
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
|
||||
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = ["transformer_2", "image_encoder", "image_processor"]
|
||||
|
||||
components = self.get_dummy_components()
|
||||
for component in optional_component:
|
||||
components[component] = None
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
for component in optional_component:
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, component) is None,
|
||||
f"`{component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_callback_inputs(self):
|
||||
pass
|
||||
@@ -12,8 +12,10 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
@@ -25,7 +27,7 @@ from transformers import (
|
||||
)
|
||||
|
||||
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanImageToVideoPipeline, WanTransformer3DModel
|
||||
from diffusers.utils.testing_utils import enable_full_determinism
|
||||
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
@@ -86,23 +88,6 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
image_dim=4,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer_2 = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=36,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
image_dim=4,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
image_encoder_config = CLIPVisionConfig(
|
||||
hidden_size=4,
|
||||
@@ -126,7 +111,7 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
"tokenizer": tokenizer,
|
||||
"image_encoder": image_encoder,
|
||||
"image_processor": image_processor,
|
||||
"transformer_2": transformer_2,
|
||||
"transformer_2": None,
|
||||
}
|
||||
return components
|
||||
|
||||
@@ -182,11 +167,44 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"TODO: refactor this test: one component can be optional for certain checkpoints but not for others"
|
||||
)
|
||||
def test_save_load_optional_components(self):
|
||||
pass
|
||||
# _optional_components include transformer, transformer_2 and image_encoder, image_processor, but only transformer_2 is optional for wan2.1 i2v pipeline
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = "transformer_2"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
components[optional_component] = None
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
|
||||
class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
@@ -242,24 +260,6 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pos_embed_seq_len=2 * (4 * 4 + 1),
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer_2 = WanTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=36,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
image_dim=4,
|
||||
pos_embed_seq_len=2 * (4 * 4 + 1),
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
image_encoder_config = CLIPVisionConfig(
|
||||
hidden_size=4,
|
||||
@@ -283,7 +283,7 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
"tokenizer": tokenizer,
|
||||
"image_encoder": image_encoder,
|
||||
"image_processor": image_processor,
|
||||
"transformer_2": transformer_2,
|
||||
"transformer_2": None,
|
||||
}
|
||||
return components
|
||||
|
||||
@@ -341,8 +341,41 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"TODO: refactor this test: one component can be optional for certain checkpoints but not for others"
|
||||
)
|
||||
def test_save_load_optional_components(self):
|
||||
pass
|
||||
# _optional_components include transformer, transformer_2 and image_encoder, image_processor, but only transformer_2 is optional for wan2.1 FLFT2V pipeline
|
||||
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
||||
optional_component = "transformer_2"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
components[optional_component] = None
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
Reference in New Issue
Block a user