mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
first commit
This commit is contained in:
@@ -276,6 +276,7 @@ else:
|
||||
"UnCLIPScheduler",
|
||||
"UniPCMultistepScheduler",
|
||||
"VQDiffusionScheduler",
|
||||
"SCMScheduler",
|
||||
]
|
||||
)
|
||||
_import_structure["training_utils"] = ["EMAModel"]
|
||||
@@ -421,6 +422,7 @@ else:
|
||||
"ReduxImageEncoder",
|
||||
"SanaPAGPipeline",
|
||||
"SanaPipeline",
|
||||
"SanaSCMPipeline",
|
||||
"SemanticStableDiffusionPipeline",
|
||||
"ShapEImg2ImgPipeline",
|
||||
"ShapEPipeline",
|
||||
@@ -839,6 +841,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
UnCLIPScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
VQDiffusionScheduler,
|
||||
SCMScheduler,
|
||||
)
|
||||
from .training_utils import EMAModel
|
||||
|
||||
@@ -965,6 +968,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ReduxImageEncoder,
|
||||
SanaPAGPipeline,
|
||||
SanaPipeline,
|
||||
SanaSCMPipeline,
|
||||
SemanticStableDiffusionPipeline,
|
||||
ShapEImg2ImgPipeline,
|
||||
ShapEPipeline,
|
||||
|
||||
@@ -6020,6 +6020,11 @@ class SanaLinearAttnProcessor2_0:
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
query = query.transpose(1, 2).unflatten(1, (attn.heads, -1))
|
||||
key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3)
|
||||
value = value.transpose(1, 2).unflatten(1, (attn.heads, -1))
|
||||
|
||||
@@ -30,7 +30,9 @@ from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormSingle, RMSNorm
|
||||
from ..embeddings import TimestepEmbedding, Timesteps
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
@@ -96,6 +98,102 @@ class SanaModulatedNorm(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module):
|
||||
"""
|
||||
For Sana.
|
||||
|
||||
Reference:
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
||||
|
||||
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
||||
|
||||
guidance_proj = self.guidance_condition_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype))
|
||||
conditioning = timesteps_emb + guidance_emb
|
||||
|
||||
return self.linear(self.silu(conditioning)), conditioning
|
||||
|
||||
|
||||
|
||||
class SanaAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
class SanaTransformerBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
|
||||
@@ -115,6 +213,7 @@ class SanaTransformerBlock(nn.Module):
|
||||
norm_eps: float = 1e-6,
|
||||
attention_out_bias: bool = True,
|
||||
mlp_ratio: float = 2.5,
|
||||
qk_norm: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -124,6 +223,8 @@ class SanaTransformerBlock(nn.Module):
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
kv_heads=num_attention_heads if qk_norm is not None else None,
|
||||
qk_norm=qk_norm,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
cross_attention_dim=None,
|
||||
@@ -135,13 +236,15 @@ class SanaTransformerBlock(nn.Module):
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
qk_norm=qk_norm,
|
||||
kv_heads=num_cross_attention_heads if qk_norm is not None else None,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
heads=num_cross_attention_heads,
|
||||
dim_head=cross_attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=True,
|
||||
out_bias=attention_out_bias,
|
||||
processor=AttnProcessor2_0(),
|
||||
processor=SanaAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
@@ -258,6 +361,8 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
norm_elementwise_affine: bool = False,
|
||||
norm_eps: float = 1e-6,
|
||||
interpolation_scale: Optional[int] = None,
|
||||
guidance_embeds: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -276,7 +381,10 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
)
|
||||
|
||||
# 2. Additional condition embeddings
|
||||
self.time_embed = AdaLayerNormSingle(inner_dim)
|
||||
if guidance_embeds:
|
||||
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim)
|
||||
else:
|
||||
self.time_embed = AdaLayerNormSingle(inner_dim)
|
||||
|
||||
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
||||
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
||||
@@ -296,6 +404,7 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
@@ -372,7 +481,8 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: torch.LongTensor,
|
||||
timestep: torch.Tensor,
|
||||
guidance: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
@@ -423,9 +533,14 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
|
||||
hidden_states = self.patch_embed(hidden_states)
|
||||
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
if guidance is not None:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
else:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
|
||||
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
|
||||
@@ -280,7 +280,7 @@ else:
|
||||
_import_structure["paint_by_example"] = ["PaintByExamplePipeline"]
|
||||
_import_structure["pia"] = ["PIAPipeline"]
|
||||
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"]
|
||||
_import_structure["sana"] = ["SanaPipeline"]
|
||||
_import_structure["sana"] = ["SanaPipeline", "SanaSCMPipeline"]
|
||||
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
|
||||
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
|
||||
_import_structure["stable_audio"] = [
|
||||
@@ -651,7 +651,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .paint_by_example import PaintByExamplePipeline
|
||||
from .pia import PIAPipeline
|
||||
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
|
||||
from .sana import SanaPipeline
|
||||
from .sana import SanaPipeline, SanaSCMPipeline
|
||||
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
||||
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
|
||||
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
|
||||
|
||||
@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_sana"] = ["SanaPipeline"]
|
||||
_import_structure["pipeline_sana_scm"] = ["SanaSCMPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -33,6 +34,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_sana import SanaPipeline
|
||||
from .pipeline_sana_scm import SanaSCMPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
991
src/diffusers/pipelines/sana/pipeline_sana_scm.py
Normal file
991
src/diffusers/pipelines/sana/pipeline_sana_scm.py
Normal file
@@ -0,0 +1,991 @@
|
||||
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import html
|
||||
import inspect
|
||||
import re
|
||||
import urllib.parse as ul
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PixArtImageProcessor
|
||||
from ...loaders import SanaLoraLoaderMixin
|
||||
from ...models import AutoencoderDC, SanaTransformer2DModel
|
||||
from ...schedulers import DPMSolverMultistepScheduler
|
||||
from ...utils import (
|
||||
BACKENDS_MAPPING,
|
||||
USE_PEFT_BACKEND,
|
||||
is_bs4_available,
|
||||
is_ftfy_available,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from ..pixart_alpha.pipeline_pixart_alpha import (
|
||||
ASPECT_RATIO_512_BIN,
|
||||
ASPECT_RATIO_1024_BIN,
|
||||
)
|
||||
from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
|
||||
from .pipeline_output import SanaPipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
if is_bs4_available():
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
if is_ftfy_available():
|
||||
import ftfy
|
||||
|
||||
|
||||
ASPECT_RATIO_4096_BIN = {
|
||||
"0.25": [2048.0, 8192.0],
|
||||
"0.26": [2048.0, 7936.0],
|
||||
"0.27": [2048.0, 7680.0],
|
||||
"0.28": [2048.0, 7424.0],
|
||||
"0.32": [2304.0, 7168.0],
|
||||
"0.33": [2304.0, 6912.0],
|
||||
"0.35": [2304.0, 6656.0],
|
||||
"0.4": [2560.0, 6400.0],
|
||||
"0.42": [2560.0, 6144.0],
|
||||
"0.48": [2816.0, 5888.0],
|
||||
"0.5": [2816.0, 5632.0],
|
||||
"0.52": [2816.0, 5376.0],
|
||||
"0.57": [3072.0, 5376.0],
|
||||
"0.6": [3072.0, 5120.0],
|
||||
"0.68": [3328.0, 4864.0],
|
||||
"0.72": [3328.0, 4608.0],
|
||||
"0.78": [3584.0, 4608.0],
|
||||
"0.82": [3584.0, 4352.0],
|
||||
"0.88": [3840.0, 4352.0],
|
||||
"0.94": [3840.0, 4096.0],
|
||||
"1.0": [4096.0, 4096.0],
|
||||
"1.07": [4096.0, 3840.0],
|
||||
"1.13": [4352.0, 3840.0],
|
||||
"1.21": [4352.0, 3584.0],
|
||||
"1.29": [4608.0, 3584.0],
|
||||
"1.38": [4608.0, 3328.0],
|
||||
"1.46": [4864.0, 3328.0],
|
||||
"1.67": [5120.0, 3072.0],
|
||||
"1.75": [5376.0, 3072.0],
|
||||
"2.0": [5632.0, 2816.0],
|
||||
"2.09": [5888.0, 2816.0],
|
||||
"2.4": [6144.0, 2560.0],
|
||||
"2.5": [6400.0, 2560.0],
|
||||
"2.89": [6656.0, 2304.0],
|
||||
"3.0": [6912.0, 2304.0],
|
||||
"3.11": [7168.0, 2304.0],
|
||||
"3.62": [7424.0, 2048.0],
|
||||
"3.75": [7680.0, 2048.0],
|
||||
"3.88": [7936.0, 2048.0],
|
||||
"4.0": [8192.0, 2048.0],
|
||||
}
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import SanaPipeline
|
||||
|
||||
>>> pipe = SanaPipeline.from_pretrained(
|
||||
... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
>>> pipe.text_encoder.to(torch.bfloat16)
|
||||
>>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
|
||||
|
||||
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
|
||||
>>> image[0].save("output.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class SanaSCMPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
|
||||
"""
|
||||
|
||||
# fmt: off
|
||||
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
|
||||
# fmt: on
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
|
||||
text_encoder: Gemma2PreTrainedModel,
|
||||
vae: AutoencoderDC,
|
||||
transformer: SanaTransformer2DModel,
|
||||
scheduler: DPMSolverMultistepScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
|
||||
if hasattr(self, "vae") and self.vae is not None
|
||||
else 32
|
||||
)
|
||||
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: str = "",
|
||||
num_images_per_prompt: int = 1,
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
clean_caption: bool = False,
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: Optional[List[str]] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
||||
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
||||
PixArt-Alpha, this should be "".
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
whether to use classifier free guidance or not
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
number of images that should be generated per prompt
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
|
||||
clean_caption (`bool`, defaults to `False`):
|
||||
If `True`, the function will preprocess and clean the provided caption before encoding.
|
||||
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
||||
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
||||
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
||||
the prompt.
|
||||
"""
|
||||
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if getattr(self, "tokenizer", None) is not None:
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
# See Section 3.1. of the paper.
|
||||
max_length = max_sequence_length
|
||||
select_index = [0] + list(range(-max_length + 1, 0))
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
||||
|
||||
# prepare complex human instruction
|
||||
if not complex_human_instruction:
|
||||
max_length_all = max_length
|
||||
else:
|
||||
chi_prompt = "\n".join(complex_human_instruction)
|
||||
prompt = [chi_prompt + p for p in prompt]
|
||||
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
||||
max_length_all = num_chi_prompt_tokens + max_length - 2
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length_all,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
prompt_attention_mask = text_inputs.attention_mask
|
||||
prompt_attention_mask = prompt_attention_mask.to(device)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
||||
prompt_embeds = prompt_embeds[0][:, select_index]
|
||||
prompt_attention_mask = prompt_attention_mask[:, select_index]
|
||||
|
||||
if self.transformer is not None:
|
||||
dtype = self.transformer.dtype
|
||||
elif self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
||||
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
negative_prompt_attention_mask = uncond_input.attention_mask
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
else:
|
||||
negative_prompt_embeds = None
|
||||
negative_prompt_attention_mask = None
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
):
|
||||
if height % 32 != 0 or width % 32 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
||||
|
||||
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
||||
f" {negative_prompt_attention_mask.shape}."
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
||||
def _text_preprocessing(self, text, clean_caption=False):
|
||||
if clean_caption and not is_bs4_available():
|
||||
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
||||
logger.warning("Setting `clean_caption` to False...")
|
||||
clean_caption = False
|
||||
|
||||
if clean_caption and not is_ftfy_available():
|
||||
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
||||
logger.warning("Setting `clean_caption` to False...")
|
||||
clean_caption = False
|
||||
|
||||
if not isinstance(text, (tuple, list)):
|
||||
text = [text]
|
||||
|
||||
def process(text: str):
|
||||
if clean_caption:
|
||||
text = self._clean_caption(text)
|
||||
text = self._clean_caption(text)
|
||||
else:
|
||||
text = text.lower().strip()
|
||||
return text
|
||||
|
||||
return [process(t) for t in text]
|
||||
|
||||
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
||||
def _clean_caption(self, caption):
|
||||
caption = str(caption)
|
||||
caption = ul.unquote_plus(caption)
|
||||
caption = caption.strip().lower()
|
||||
caption = re.sub("<person>", "person", caption)
|
||||
# urls:
|
||||
caption = re.sub(
|
||||
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
||||
"",
|
||||
caption,
|
||||
) # regex for urls
|
||||
caption = re.sub(
|
||||
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
||||
"",
|
||||
caption,
|
||||
) # regex for urls
|
||||
# html:
|
||||
caption = BeautifulSoup(caption, features="html.parser").text
|
||||
|
||||
# @<nickname>
|
||||
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
||||
|
||||
# 31C0—31EF CJK Strokes
|
||||
# 31F0—31FF Katakana Phonetic Extensions
|
||||
# 3200—32FF Enclosed CJK Letters and Months
|
||||
# 3300—33FF CJK Compatibility
|
||||
# 3400—4DBF CJK Unified Ideographs Extension A
|
||||
# 4DC0—4DFF Yijing Hexagram Symbols
|
||||
# 4E00—9FFF CJK Unified Ideographs
|
||||
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
||||
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
||||
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
||||
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
||||
#######################################################
|
||||
|
||||
# все виды тире / all types of dash --> "-"
|
||||
caption = re.sub(
|
||||
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
||||
"-",
|
||||
caption,
|
||||
)
|
||||
|
||||
# кавычки к одному стандарту
|
||||
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
||||
caption = re.sub(r"[‘’]", "'", caption)
|
||||
|
||||
# "
|
||||
caption = re.sub(r""?", "", caption)
|
||||
# &
|
||||
caption = re.sub(r"&", "", caption)
|
||||
|
||||
# ip adresses:
|
||||
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
||||
|
||||
# article ids:
|
||||
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
||||
|
||||
# \n
|
||||
caption = re.sub(r"\\n", " ", caption)
|
||||
|
||||
# "#123"
|
||||
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
||||
# "#12345.."
|
||||
caption = re.sub(r"#\d{5,}\b", "", caption)
|
||||
# "123456.."
|
||||
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
||||
# filenames:
|
||||
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
||||
|
||||
#
|
||||
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
||||
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
||||
|
||||
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
||||
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
||||
|
||||
# this-is-my-cute-cat / this_is_my_cute_cat
|
||||
regex2 = re.compile(r"(?:\-|\_)")
|
||||
if len(re.findall(regex2, caption)) > 3:
|
||||
caption = re.sub(regex2, " ", caption)
|
||||
|
||||
caption = ftfy.fix_text(caption)
|
||||
caption = html.unescape(html.unescape(caption))
|
||||
|
||||
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
||||
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
||||
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
||||
|
||||
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
||||
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
||||
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
||||
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
||||
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
||||
|
||||
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
||||
|
||||
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
||||
|
||||
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
||||
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
||||
caption = re.sub(r"\s+", " ", caption)
|
||||
|
||||
caption.strip()
|
||||
|
||||
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
||||
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
||||
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
||||
caption = re.sub(r"^\.\S+$", "", caption)
|
||||
|
||||
return caption.strip()
|
||||
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
if latents is not None:
|
||||
return latents.to(device=device, dtype=dtype)
|
||||
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
return latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1.0
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: str = "",
|
||||
num_inference_steps: int = 20,
|
||||
timesteps: List[int] = None,
|
||||
sigmas: List[float] = None,
|
||||
guidance_scale: float = 4.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
clean_caption: bool = False,
|
||||
use_resolution_binning: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: List[str] = [
|
||||
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
|
||||
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
|
||||
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
|
||||
"Here are examples of how to transform or refine prompts:",
|
||||
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
|
||||
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
|
||||
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
|
||||
"User Prompt: ",
|
||||
],
|
||||
) -> Union[SanaPipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_inference_steps (`int`, *optional*, defaults to 20):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 4.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The width in pixels of the generated image.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
||||
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
||||
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
||||
Pre-generated attention mask for negative text embeddings.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs:
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
clean_caption (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
||||
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
||||
prompt.
|
||||
use_resolution_binning (`bool` defaults to `True`):
|
||||
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
||||
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
||||
the requested resolution. Useful for generating non-square images.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to `300`):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
complex_human_instruction (`List[str]`, *optional*):
|
||||
Instructions for complex human attention:
|
||||
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
|
||||
otherwise a `tuple` is returned where the first element is a list with the generated images
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
if use_resolution_binning:
|
||||
if self.transformer.config.sample_size == 128:
|
||||
aspect_ratio_bin = ASPECT_RATIO_4096_BIN
|
||||
elif self.transformer.config.sample_size == 64:
|
||||
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
||||
elif self.transformer.config.sample_size == 32:
|
||||
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
||||
elif self.transformer.config.sample_size == 16:
|
||||
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
||||
else:
|
||||
raise ValueError("Invalid sample size")
|
||||
orig_height, orig_width = height, width
|
||||
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
||||
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default height and width to transformer
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
||||
|
||||
# 3. Encode input prompt
|
||||
(
|
||||
prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
_,
|
||||
_,
|
||||
) = self.encode_prompt(
|
||||
prompt,
|
||||
False,
|
||||
negative_prompt=negative_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=complex_human_instruction,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
# prompt_embeds = torch.load("/raid/yiyi/Sana-Sprint-diffusers/y.pt").to(device, dtype=prompt_embeds.dtype)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
||||
)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# latents = torch.load("/raid/yiyi/Sana-Sprint-diffusers/latents.pt").to(device, dtype=latents.dtype)
|
||||
|
||||
latents = latents * self.scheduler.config.sigma_data
|
||||
|
||||
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(latents.shape[0]).to(prompt_embeds.dtype)
|
||||
# YiYi TODO: cfg_embed_scale = 0.1 (refactor this out)
|
||||
guidance = guidance * 0.1
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# YiYi TODO: refactor this
|
||||
timesteps = timesteps[:-1]
|
||||
|
||||
# 7. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(prompt_embeds.dtype)
|
||||
|
||||
# YiYi TODO: self.scheduler.scale_model_input?
|
||||
latents_model_input = latents / self.scheduler.config.sigma_data
|
||||
|
||||
# YiYi TODO: refator this out
|
||||
scm_timestep = torch.sin(timestep) / (torch.cos(timestep) + torch.sin(timestep))
|
||||
latent_model_input = latents_model_input * torch.sqrt(scm_timestep**2 + (1 - scm_timestep) ** 2)
|
||||
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
guidance=guidance,
|
||||
timestep=scm_timestep,
|
||||
return_dict=False,
|
||||
attention_kwargs=self.attention_kwargs,
|
||||
)[0]
|
||||
|
||||
# YiYi TODO: refator this out
|
||||
noise_pred = ((1 - 2 * scm_timestep) * latent_model_input + (1 - 2 * scm_timestep + 2 * scm_timestep**2) * noise_pred) / torch.sqrt(
|
||||
scm_timestep**2 + (1 - scm_timestep) ** 2
|
||||
)
|
||||
# YiYi TODO: check if this can be refatored into scheduler
|
||||
noise_pred = noise_pred.float() * self.scheduler.config.sigma_data
|
||||
|
||||
# compute previous image: x_t -> x_t-1
|
||||
latents, denoised = self.scheduler.step(noise_pred, i, timestep, latents, **extra_step_kwargs, return_dict=False)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
# YiYi TODO: refator this out
|
||||
latents = denoised / self.scheduler.config.sigma_data
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
try:
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
except torch.cuda.OutOfMemoryError as e:
|
||||
warnings.warn(
|
||||
f"{e}. \n"
|
||||
f"Try to use VAE tiling for large images. For example: \n"
|
||||
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
|
||||
)
|
||||
if use_resolution_binning:
|
||||
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return SanaPipelineOutput(images=image)
|
||||
@@ -74,6 +74,7 @@ else:
|
||||
_import_structure["scheduling_unipc_multistep"] = ["UniPCMultistepScheduler"]
|
||||
_import_structure["scheduling_utils"] = ["AysSchedules", "KarrasDiffusionSchedulers", "SchedulerMixin"]
|
||||
_import_structure["scheduling_vq_diffusion"] = ["VQDiffusionScheduler"]
|
||||
_import_structure["scheduling_scm"] = ["SCMScheduler"]
|
||||
|
||||
try:
|
||||
if not is_flax_available():
|
||||
@@ -174,7 +175,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .scheduling_unipc_multistep import UniPCMultistepScheduler
|
||||
from .scheduling_utils import AysSchedules, KarrasDiffusionSchedulers, SchedulerMixin
|
||||
from .scheduling_vq_diffusion import VQDiffusionScheduler
|
||||
|
||||
from .scheduling_scm import SCMScheduler
|
||||
try:
|
||||
if not is_flax_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
237
src/diffusers/schedulers/scheduling_scm.py
Normal file
237
src/diffusers/schedulers/scheduling_scm.py
Normal file
@@ -0,0 +1,237 @@
|
||||
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
||||
# and https://github.com/hojonathanho/diffusion
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..schedulers.scheduling_utils import SchedulerMixin
|
||||
from ..utils import BaseOutput, logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
||||
class SCMSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
Args:
|
||||
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
||||
`pred_original_sample` can be used to preview progress or for guidance.
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
denoised: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
class SCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
`SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
||||
non-Markovian guidance.
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
beta_start (`float`, defaults to 0.0001):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||||
clip_sample (`bool`, defaults to `True`):
|
||||
Clip the predicted sample for numerical stability.
|
||||
clip_sample_range (`float`, defaults to 1.0):
|
||||
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
||||
set_alpha_to_one (`bool`, defaults to `True`):
|
||||
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
||||
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
||||
otherwise it uses the alpha value at step 0.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
An offset added to the inference steps. You can use a combination of `offset=1` and
|
||||
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
||||
Diffusion.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||||
thresholding (`bool`, defaults to `False`):
|
||||
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
||||
as Stable Diffusion.
|
||||
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
||||
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
||||
sample_max_value (`float`, defaults to 1.0):
|
||||
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
||||
timestep_spacing (`str`, defaults to `"leading"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
||||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||||
"""
|
||||
|
||||
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: str = "trigflow",
|
||||
thresholding: bool = False,
|
||||
dynamic_thresholding_ratio: float = 0.995,
|
||||
clip_sample_range: float = 1.0,
|
||||
sample_max_value: float = 1.0,
|
||||
timestep_spacing: str = "leading",
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
max_timesteps: float = 1.57080,
|
||||
intermediate_timesteps: Optional[int] = 1.3,
|
||||
sigma_data: float = 0.5,
|
||||
):
|
||||
# standard deviation of the initial noise distribution
|
||||
self.init_noise_sigma = 1.0
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
timesteps: torch.Tensor = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
if num_inference_steps > self.config.num_train_timesteps:
|
||||
raise ValueError(
|
||||
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
||||
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
||||
f" maximal {self.config.num_train_timesteps} timesteps."
|
||||
)
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
if timesteps is not None and len(timesteps) == num_inference_steps + 1:
|
||||
if isinstance(timesteps, list):
|
||||
self.timesteps = torch.tensor(timesteps, device=device).float()
|
||||
elif isinstance(timesteps, torch.Tensor):
|
||||
self.timesteps = timesteps.to(device).float()
|
||||
else:
|
||||
raise ValueError(f"Unsupported timesteps type: {type(timesteps)}")
|
||||
elif self.config.intermediate_timesteps and num_inference_steps == 2:
|
||||
self.timesteps = torch.tensor([self.config.max_timesteps, self.config.intermediate_timesteps, 0], device=device).float()
|
||||
elif self.config.intermediate_timesteps:
|
||||
self.timesteps = torch.linspace(self.config.max_timesteps, 0, num_inference_steps + 1, device=device).float()
|
||||
warnings.warn(
|
||||
f"Intermediate timesteps for SCM is not supported when num_inference_steps != 2. "
|
||||
f"Reset timesteps to {self.timesteps} default max_timesteps"
|
||||
)
|
||||
else:
|
||||
# max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here
|
||||
self.timesteps = torch.linspace(self.config.max_timesteps, 0, num_inference_steps + 1, device=device).float()
|
||||
|
||||
print(f"Set timesteps: {self.timesteps}")
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timeindex: int,
|
||||
timestep: float,
|
||||
sample: torch.FloatTensor,
|
||||
generator: torch.Generator = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SCMSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
Args:
|
||||
model_output (`torch.FloatTensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
itself. Useful for methods such as [`CycleDiffusion`].
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
"""
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
# 2. compute alphas, betas
|
||||
t = self.timesteps[timeindex + 1]
|
||||
s = self.timesteps[timeindex]
|
||||
|
||||
# 4. Different Parameterization:
|
||||
parameterization = self.config.prediction_type
|
||||
|
||||
if parameterization == "trigflow":
|
||||
pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output
|
||||
else:
|
||||
raise ValueError(f"Unsupported parameterization: {parameterization}")
|
||||
|
||||
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
||||
# Noise is not used for one-step sampling.
|
||||
if len(self.timesteps) > 1:
|
||||
noise = torch.randn(model_output.shape, device=model_output.device, generator=generator) * self.config.sigma_data
|
||||
prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise
|
||||
else:
|
||||
prev_sample = pred_x0
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, pred_x0)
|
||||
|
||||
return SCMSchedulerOutput(prev_sample=prev_sample, denoised=pred_x0)
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
Reference in New Issue
Block a user