mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
add Sa-Solver (#5975)
* add Sa-Solver --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: scxue <xueshuchen17@mails.ucas.edu.cn> Co-authored-by: jschen <chenjunsong4@h-partners.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: yiyixuxu <yixu310@gmail,com>
This commit is contained in:
@@ -153,6 +153,7 @@ else:
|
||||
"LCMScheduler",
|
||||
"PNDMScheduler",
|
||||
"RePaintScheduler",
|
||||
"SASolverScheduler",
|
||||
"SchedulerMixin",
|
||||
"ScoreSdeVeScheduler",
|
||||
"UnCLIPScheduler",
|
||||
@@ -530,6 +531,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
LCMScheduler,
|
||||
PNDMScheduler,
|
||||
RePaintScheduler,
|
||||
SASolverScheduler,
|
||||
SchedulerMixin,
|
||||
ScoreSdeVeScheduler,
|
||||
UnCLIPScheduler,
|
||||
|
||||
@@ -61,6 +61,7 @@ else:
|
||||
_import_structure["scheduling_lcm"] = ["LCMScheduler"]
|
||||
_import_structure["scheduling_pndm"] = ["PNDMScheduler"]
|
||||
_import_structure["scheduling_repaint"] = ["RePaintScheduler"]
|
||||
_import_structure["scheduling_sasolver"] = ["SASolverScheduler"]
|
||||
_import_structure["scheduling_sde_ve"] = ["ScoreSdeVeScheduler"]
|
||||
_import_structure["scheduling_unclip"] = ["UnCLIPScheduler"]
|
||||
_import_structure["scheduling_unipc_multistep"] = ["UniPCMultistepScheduler"]
|
||||
@@ -152,6 +153,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .scheduling_lcm import LCMScheduler
|
||||
from .scheduling_pndm import PNDMScheduler
|
||||
from .scheduling_repaint import RePaintScheduler
|
||||
from .scheduling_sasolver import SASolverScheduler
|
||||
from .scheduling_sde_ve import ScoreSdeVeScheduler
|
||||
from .scheduling_unclip import UnCLIPScheduler
|
||||
from .scheduling_unipc_multistep import UniPCMultistepScheduler
|
||||
|
||||
1089
src/diffusers/schedulers/scheduling_sasolver.py
Normal file
1089
src/diffusers/schedulers/scheduling_sasolver.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -990,6 +990,21 @@ class RePaintScheduler(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SASolverScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SchedulerMixin(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
202
tests/schedulers/test_scheduler_sasolver.py
Normal file
202
tests/schedulers/test_scheduler_sasolver.py
Normal file
@@ -0,0 +1,202 @@
|
||||
import torch
|
||||
|
||||
from diffusers import SASolverScheduler
|
||||
from diffusers.utils.testing_utils import require_torchsde, torch_device
|
||||
|
||||
from .test_schedulers import SchedulerCommonTest
|
||||
|
||||
|
||||
@require_torchsde
|
||||
class SASolverSchedulerTest(SchedulerCommonTest):
|
||||
scheduler_classes = (SASolverScheduler,)
|
||||
forward_default_kwargs = (("num_inference_steps", 10),)
|
||||
num_inference_steps = 10
|
||||
|
||||
def get_scheduler_config(self, **kwargs):
|
||||
config = {
|
||||
"num_train_timesteps": 1100,
|
||||
"beta_start": 0.0001,
|
||||
"beta_end": 0.02,
|
||||
"beta_schedule": "linear",
|
||||
}
|
||||
|
||||
config.update(**kwargs)
|
||||
return config
|
||||
|
||||
def test_step_shape(self):
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
|
||||
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
sample = self.dummy_sample
|
||||
residual = 0.1 * sample
|
||||
|
||||
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
|
||||
scheduler.set_timesteps(num_inference_steps)
|
||||
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
|
||||
kwargs["num_inference_steps"] = num_inference_steps
|
||||
|
||||
# copy over dummy past residuals (must be done after set_timesteps)
|
||||
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
|
||||
scheduler.model_outputs = dummy_past_residuals[
|
||||
: max(
|
||||
scheduler.config.predictor_order,
|
||||
scheduler.config.corrector_order - 1,
|
||||
)
|
||||
]
|
||||
|
||||
time_step_0 = scheduler.timesteps[5]
|
||||
time_step_1 = scheduler.timesteps[6]
|
||||
|
||||
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
|
||||
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
|
||||
|
||||
self.assertEqual(output_0.shape, sample.shape)
|
||||
self.assertEqual(output_0.shape, output_1.shape)
|
||||
|
||||
def test_timesteps(self):
|
||||
for timesteps in [10, 50, 100, 1000]:
|
||||
self.check_over_configs(num_train_timesteps=timesteps)
|
||||
|
||||
def test_betas(self):
|
||||
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
|
||||
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
|
||||
|
||||
def test_schedules(self):
|
||||
for schedule in ["linear", "scaled_linear"]:
|
||||
self.check_over_configs(beta_schedule=schedule)
|
||||
|
||||
def test_prediction_type(self):
|
||||
for prediction_type in ["epsilon", "v_prediction"]:
|
||||
self.check_over_configs(prediction_type=prediction_type)
|
||||
|
||||
def test_full_loop_no_noise(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(self.num_inference_steps)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
||||
sample = sample.to(torch_device)
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
for i, t in enumerate(scheduler.timesteps):
|
||||
sample = scheduler.scale_model_input(sample, t, generator=generator)
|
||||
|
||||
model_output = model(sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
if torch_device in ["cpu"]:
|
||||
assert abs(result_sum.item() - 337.394287109375) < 1e-2
|
||||
assert abs(result_mean.item() - 0.43931546807289124) < 1e-3
|
||||
elif torch_device in ["cuda"]:
|
||||
assert abs(result_sum.item() - 329.1999816894531) < 1e-2
|
||||
assert abs(result_mean.item() - 0.4286458194255829) < 1e-3
|
||||
else:
|
||||
print("None")
|
||||
|
||||
def test_full_loop_with_v_prediction(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(self.num_inference_steps)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
||||
sample = sample.to(torch_device)
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
for i, t in enumerate(scheduler.timesteps):
|
||||
sample = scheduler.scale_model_input(sample, t, generator=generator)
|
||||
|
||||
model_output = model(sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
if torch_device in ["cpu"]:
|
||||
assert abs(result_sum.item() - 193.1467742919922) < 1e-2
|
||||
assert abs(result_mean.item() - 0.2514931857585907) < 1e-3
|
||||
elif torch_device in ["cuda"]:
|
||||
assert abs(result_sum.item() - 193.4154052734375) < 1e-2
|
||||
assert abs(result_mean.item() - 0.2518429756164551) < 1e-3
|
||||
else:
|
||||
print("None")
|
||||
|
||||
def test_full_loop_device(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
for t in scheduler.timesteps:
|
||||
sample = scheduler.scale_model_input(sample, t)
|
||||
|
||||
model_output = model(sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample, generator=generator)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
if torch_device in ["cpu"]:
|
||||
assert abs(result_sum.item() - 337.394287109375) < 1e-2
|
||||
assert abs(result_mean.item() - 0.43931546807289124) < 1e-3
|
||||
elif torch_device in ["cuda"]:
|
||||
assert abs(result_sum.item() - 337.394287109375) < 1e-2
|
||||
assert abs(result_mean.item() - 0.4393154978752136) < 1e-3
|
||||
else:
|
||||
print("None")
|
||||
|
||||
def test_full_loop_device_karras_sigmas(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True)
|
||||
|
||||
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
|
||||
|
||||
model = self.dummy_model()
|
||||
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
|
||||
sample = sample.to(torch_device)
|
||||
generator = torch.manual_seed(0)
|
||||
|
||||
for t in scheduler.timesteps:
|
||||
sample = scheduler.scale_model_input(sample, t)
|
||||
|
||||
model_output = model(sample, t)
|
||||
|
||||
output = scheduler.step(model_output, t, sample, generator=generator)
|
||||
sample = output.prev_sample
|
||||
|
||||
result_sum = torch.sum(torch.abs(sample))
|
||||
result_mean = torch.mean(torch.abs(sample))
|
||||
|
||||
if torch_device in ["cpu"]:
|
||||
assert abs(result_sum.item() - 837.2554931640625) < 1e-2
|
||||
assert abs(result_mean.item() - 1.0901764631271362) < 1e-2
|
||||
elif torch_device in ["cuda"]:
|
||||
assert abs(result_sum.item() - 837.25537109375) < 1e-2
|
||||
assert abs(result_mean.item() - 1.0901763439178467) < 1e-2
|
||||
else:
|
||||
print("None")
|
||||
Reference in New Issue
Block a user