1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
This commit is contained in:
yiyixuxu
2025-06-25 23:26:59 +02:00
parent 9530245e17
commit c437ae72c6
6 changed files with 261 additions and 53 deletions

View File

@@ -1814,7 +1814,7 @@ class ModularLoader(ConfigMixin, PushToHubMixin):
return torch.device("cpu")
@property
# Copied from diffusers.pipelines.pipeline_utils.DiffusionPipeline._execution_device
# Modified from diffusers.pipelines.pipeline_utils.DiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling

View File

@@ -451,7 +451,7 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
),
]
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps with self -> components
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps with self->components
def get_timesteps(self, components, num_inference_steps, strength, device, denoising_start=None):
# get the original timestep using init_timestep
if denoising_start is None:
@@ -697,7 +697,7 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
),
]
# Modified from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_inpaint.StableDiffusionXLInpaintPipeline._encode_vae_image with self -> components
# Modified from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_inpaint.StableDiffusionXLInpaintPipeline._encode_vae_image with self->components
# YiYi TODO: update the _encode_vae_image so that we can use #Coped from
@staticmethod
def _encode_vae_image(components, image: torch.Tensor, generator: torch.Generator):
@@ -1042,10 +1042,9 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
f"`height` and `width` have to be divisible by {components.vae_scale_factor} but are {block_state.height} and {block_state.width}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with self -> components
@staticmethod
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with self->components
def prepare_latents(
components, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None
self, components, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None
):
shape = (
batch_size,
@@ -1167,9 +1166,9 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
OutputParam("timestep_cond", type_hint=torch.Tensor, description="The timestep cond to use for LCM"),
]
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids with self -> components
@staticmethod
def _get_add_time_ids_img2img(
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids with self->components
def _get_add_time_ids(
self,
components,
original_size,
crops_coords_top_left,
@@ -1221,9 +1220,8 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
return add_time_ids, add_neg_time_ids
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
@staticmethod
def get_guidance_scale_embedding(
w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
) -> torch.Tensor:
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
@@ -1273,7 +1271,7 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
if block_state.negative_target_size is None:
block_state.negative_target_size = block_state.target_size
block_state.add_time_ids, block_state.negative_add_time_ids = self._get_add_time_ids_img2img(
block_state.add_time_ids, block_state.negative_add_time_ids = self._get_add_time_ids(
components,
block_state.original_size,
block_state.crops_coords_top_left,
@@ -1372,10 +1370,9 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
OutputParam("timestep_cond", type_hint=torch.Tensor, description="The timestep cond to use for LCM"),
]
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids with self -> components
@staticmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids with self->components
def _get_add_time_ids(
components, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
self, components, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
@@ -1393,9 +1390,8 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
return add_time_ids
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
@staticmethod
def get_guidance_scale_embedding(
w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
) -> torch.Tensor:
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

View File

@@ -81,9 +81,8 @@ class StableDiffusionXLDecodeStep(PipelineBlock):
)
]
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae with self -> components
@staticmethod
def upcast_vae(components):
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae with self->components
def upcast_vae(self, components):
dtype = components.vae.dtype
components.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(

View File

@@ -109,9 +109,8 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock):
),
]
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image with self -> components
@staticmethod
def encode_image(components, image, device, num_images_per_prompt, output_hidden_states=None):
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image with self->components
def encode_image(self, components, image, device, num_images_per_prompt, output_hidden_states=None):
dtype = next(components.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):

View File

@@ -2,6 +2,111 @@
from ..utils import DummyObject, requires_backends
class AdaptiveProjectedGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class AutoGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ClassifierFreeGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ClassifierFreeZeroStarGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SkipLayerGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SmoothedEnergyGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class TangentialClassifierFreeGuidance(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FasterCacheConfig(metaclass=DummyObject):
_backends = ["torch"]
@@ -32,6 +137,21 @@ class HookRegistry(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class LayerSkipConfig(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PyramidAttentionBroadcastConfig(metaclass=DummyObject):
_backends = ["torch"]
@@ -47,10 +167,29 @@ class PyramidAttentionBroadcastConfig(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class SmoothedEnergyGuidanceConfig(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
def apply_faster_cache(*args, **kwargs):
requires_backends(apply_faster_cache, ["torch"])
def apply_layer_skip(*args, **kwargs):
requires_backends(apply_layer_skip, ["torch"])
def apply_pyramid_attention_broadcast(*args, **kwargs):
requires_backends(apply_pyramid_attention_broadcast, ["torch"])
@@ -1180,6 +1319,81 @@ class WanVACETransformer3DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ComponentsManager(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ComponentSpec(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ModularLoader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ModularPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ModularPipelineBlocks(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
def get_constant_schedule(*args, **kwargs):
requires_backends(get_constant_schedule, ["torch"])
@@ -1463,21 +1677,6 @@ class LDMSuperResolutionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ModularLoader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PNDMPipeline(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -2,6 +2,36 @@
from ..utils import DummyObject, requires_backends
class StableDiffusionXLAutoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionXLModularLoader(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AllegroPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -2582,21 +2612,6 @@ class StableDiffusionXLInstructPix2PixPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionXLModularLoader(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionXLPAGImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]