1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

Merge branch 'mochi-t2v' into mochi-t2v-pipeline

This commit is contained in:
Dhruv Nair
2024-10-24 14:27:03 +02:00
10 changed files with 908 additions and 251 deletions

View File

@@ -0,0 +1,187 @@
import argparse
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from safetensors.torch import load_file
# from transformers import T5EncoderModel, T5Tokenizer
from diffusers import MochiTransformer3DModel
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
TOKENIZER_MAX_LENGTH = 256
parser = argparse.ArgumentParser()
parser.add_argument("--transformer_checkpoint_path", default=None, type=str)
# parser.add_argument("--vae_checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", required=True, type=str)
parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving")
parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory")
parser.add_argument("--dtype", type=str, default=None)
args = parser.parse_args()
# This is specific to `AdaLayerNormContinuous`:
# Diffusers implementation split the linear projection into the scale, shift while Mochi split it into shift, scale
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def convert_mochi_transformer_checkpoint_to_diffusers(ckpt_path):
original_state_dict = load_file(ckpt_path, device="cpu")
new_state_dict = {}
# Convert patch_embed
new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
# Convert time_embed
new_state_dict["time_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop("t_embedder.mlp.0.weight")
new_state_dict["time_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("t_embedder.mlp.0.bias")
new_state_dict["time_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop("t_embedder.mlp.2.weight")
new_state_dict["time_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("t_embedder.mlp.2.bias")
new_state_dict["time_embed.pooler.to_kv.weight"] = original_state_dict.pop("t5_y_embedder.to_kv.weight")
new_state_dict["time_embed.pooler.to_kv.bias"] = original_state_dict.pop("t5_y_embedder.to_kv.bias")
new_state_dict["time_embed.pooler.to_q.weight"] = original_state_dict.pop("t5_y_embedder.to_q.weight")
new_state_dict["time_embed.pooler.to_q.bias"] = original_state_dict.pop("t5_y_embedder.to_q.bias")
new_state_dict["time_embed.pooler.to_out.weight"] = original_state_dict.pop("t5_y_embedder.to_out.weight")
new_state_dict["time_embed.pooler.to_out.bias"] = original_state_dict.pop("t5_y_embedder.to_out.bias")
new_state_dict["time_embed.caption_proj.weight"] = original_state_dict.pop("t5_yproj.weight")
new_state_dict["time_embed.caption_proj.bias"] = original_state_dict.pop("t5_yproj.bias")
# Convert transformer blocks
num_layers = 48
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
old_prefix = f"blocks.{i}."
# norm1
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(old_prefix + "mod_x.weight")
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(old_prefix + "mod_x.bias")
if i < num_layers - 1:
new_state_dict[block_prefix + "norm1_context.linear.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
else:
new_state_dict[block_prefix + "norm1_context.linear_1.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear_1.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
# Visual attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_x.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.to_q.weight"] = q
new_state_dict[block_prefix + "attn1.to_k.weight"] = k
new_state_dict[block_prefix + "attn1.to_v.weight"] = v
new_state_dict[block_prefix + "attn1.norm_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.norm_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop(old_prefix + "attn.proj_x.bias")
# Context attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_y.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q
new_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k
new_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v
new_state_dict[block_prefix + "attn1.norm_added_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_y.weight"
)
new_state_dict[block_prefix + "attn1.norm_added_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_y.weight"
)
if i < num_layers - 1:
new_state_dict[block_prefix + "attn1.to_add_out.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_y.weight"
)
new_state_dict[block_prefix + "attn1.to_add_out.bias"] = original_state_dict.pop(
old_prefix + "attn.proj_y.bias"
)
# MLP
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop(old_prefix + "mlp_x.w1.weight")
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(old_prefix + "mlp_x.w2.weight")
if i < num_layers - 1:
new_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = original_state_dict.pop(
old_prefix + "mlp_y.w1.weight"
)
new_state_dict[block_prefix + "ff_context.net.2.weight"] = original_state_dict.pop(
old_prefix + "mlp_y.w2.weight"
)
# Output layers
new_state_dict["norm_out.linear.weight"] = original_state_dict.pop("final_layer.mod.weight")
new_state_dict["norm_out.linear.bias"] = original_state_dict.pop("final_layer.mod.bias")
new_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
new_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
new_state_dict["pos_frequencies"] = original_state_dict.pop("pos_frequencies")
print("Remaining Keys:", original_state_dict.keys())
return new_state_dict
# def convert_mochi_vae_checkpoint_to_diffusers(ckpt_path, vae_config):
# original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
# return convert_ldm_vae_checkpoint(original_state_dict, vae_config)
def main(args):
if args.dtype is None:
dtype = None
if args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "bf16":
dtype = torch.bfloat16
elif args.dtype == "fp32":
dtype = torch.float32
else:
raise ValueError(f"Unsupported dtype: {args.dtype}")
transformer = None
# vae = None
if args.transformer_checkpoint_path is not None:
converted_transformer_state_dict = convert_mochi_transformer_checkpoint_to_diffusers(
args.transformer_checkpoint_path
)
transformer = MochiTransformer3DModel()
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
if dtype is not None:
# Original checkpoint data type will be preserved
transformer = transformer.to(dtype=dtype)
# text_encoder_id = "google/t5-v1_1-xxl"
# tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
# text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
# # Apparently, the conversion does not work anymore without this :shrug:
# for param in text_encoder.parameters():
# param.data = param.data.contiguous()
transformer.save_pretrained("/raid/aryan/mochi-diffusers", subfolder="transformer")
if __name__ == "__main__":
main(args)

View File

@@ -100,6 +100,7 @@ else:
"Kandinsky3UNet",
"LatteTransformer3DModel",
"LuminaNextDiT2DModel",
"MochiTransformer3DModel",
"ModelMixin",
"MotionAdapter",
"MultiAdapter",
@@ -579,6 +580,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Kandinsky3UNet,
LatteTransformer3DModel,
LuminaNextDiT2DModel,
MochiTransformer3DModel,
ModelMixin,
MotionAdapter,
MultiAdapter,

View File

@@ -56,6 +56,7 @@ if is_torch_available():
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
_import_structure["transformers.transformer_mochi"] = ["MochiTransformer3DModel"]
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
@@ -106,6 +107,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
HunyuanDiT2DModel,
LatteTransformer3DModel,
LuminaNextDiT2DModel,
MochiTransformer3DModel,
PixArtTransformer2DModel,
PriorTransformer,
SD3Transformer2DModel,

View File

@@ -120,6 +120,7 @@ class Attention(nn.Module):
_from_deprecated_attn_block: bool = False,
processor: Optional["AttnProcessor"] = None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
@@ -142,6 +143,7 @@ class Attention(nn.Module):
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
@@ -241,7 +243,7 @@ class Attention(nn.Module):
self.to_out.append(nn.Dropout(dropout))
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)
if qk_norm is not None and added_kv_proj_dim is not None:
if qk_norm == "fp32_layer_norm":
@@ -1792,6 +1794,7 @@ class FluxAttnProcessor2_0:
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
@@ -3078,6 +3081,93 @@ class LuminaAttnProcessor2_0:
return hidden_states
class MochiAttnProcessor2_0:
"""Attention processor used in Mochi."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
if image_rotary_emb is not None:
def apply_rotary_emb(x, freqs_cos, freqs_sin):
x_even = x[..., 0::2].float()
x_odd = x[..., 1::2].float()
cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)
return torch.stack([cos, sin], dim=-1).flatten(-2)
query = apply_rotary_emb(query, *image_rotary_emb)
key = apply_rotary_emb(key, *image_rotary_emb)
query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
encoder_query, encoder_key, encoder_value = (
encoder_query.transpose(1, 2),
encoder_key.transpose(1, 2),
encoder_value.transpose(1, 2),
)
sequence_length = query.size(2)
encoder_sequence_length = encoder_query.size(2)
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
(sequence_length, encoder_sequence_length), dim=1
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
class FusedAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses

View File

@@ -1302,6 +1302,41 @@ class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
return conditioning
class MochiCombinedTimestepCaptionEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
pooled_projection_dim: int,
text_embed_dim: int,
time_embed_dim: int = 256,
num_attention_heads: int = 8,
) -> None:
super().__init__()
self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
self.pooler = MochiAttentionPool(
num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
)
self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim)
def forward(
self,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
hidden_dtype: Optional[torch.dtype] = None,
):
time_proj = self.time_proj(timestep)
time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))
pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
caption_proj = self.caption_proj(encoder_hidden_states)
conditioning = time_emb + pooled_projections
return conditioning, caption_proj
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
@@ -1445,7 +1480,7 @@ class MochiAttentionPool(nn.Module):
self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
self.to_q = nn.Linear(embed_dim, embed_dim)
self.to_out = nn.Linear(embed_dim, self.output_dim)
@staticmethod
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
"""
@@ -1504,9 +1539,7 @@ class MochiAttentionPool(nn.Module):
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0.0
) # (B, H, 1, head_dim)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)

View File

@@ -237,6 +237,33 @@ class LuminaRMSNormZero(nn.Module):
return x, gate_msa, scale_mlp, gate_mlp
class MochiRMSNormZero(nn.Module):
r"""
Adaptive RMS Norm used in Mochi.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
"""
def __init__(
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
) -> None:
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, hidden_dim)
self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(
self, hidden_states: torch.Tensor, emb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
hidden_states = self.norm(hidden_states) * (1 + scale_msa[:, None])
return hidden_states, gate_msa, scale_mlp, gate_mlp
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
@@ -358,20 +385,21 @@ class LuminaLayerNormContinuous(nn.Module):
out_dim: Optional[int] = None,
):
super().__init__()
# AdaLN
self.silu = nn.SiLU()
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
if norm_type == "rms_norm":
self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
else:
raise ValueError(f"unknown norm_type {norm_type}")
# linear_2
self.linear_2 = None
if out_dim is not None:
self.linear_2 = nn.Linear(
embedding_dim,
out_dim,
bias=bias,
)
self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias)
def forward(
self,

View File

@@ -16,5 +16,6 @@ if is_torch_available():
from .transformer_2d import Transformer2DModel
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
from .transformer_flux import FluxTransformer2DModel
from .transformer_mochi import MochiTransformer3DModel
from .transformer_sd3 import SD3Transformer2DModel
from .transformer_temporal import TransformerTemporalModel

View File

@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
from typing import Optional, Tuple
import torch
import torch.nn as nn
@@ -21,11 +21,12 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import Attention, FeedForward
from ..embeddings import PatchEmbed, MochiAttentionPool, TimestepEmbedding, Timesteps
from ..attention import FeedForward
from ..attention_processor import Attention, MochiAttnProcessor2_0
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNorm
from ..normalization import AdaLayerNormContinuous, LuminaLayerNormContinuous, MochiRMSNormZero, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -38,36 +39,160 @@ class MochiTransformerBlock(nn.Module):
dim: int,
num_attention_heads: int,
attention_head_dim: int,
caption_dim: int,
update_captions: bool = True,
pooled_projection_dim: int,
qk_norm: str = "rms_norm",
activation_fn: str = "swiglu",
context_pre_only: bool = True,
eps: float = 1e-6,
) -> None:
super().__init__()
# TODO: Replace this with norm
self.mod_x = nn.Linear(dim, 4 * dim)
if self.update_y:
self.mod_y = nn.Linear(dim, 4 * caption_dim)
self.context_pre_only = context_pre_only
self.ff_inner_dim = (4 * dim * 2) // 3
self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3
self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False)
if not context_pre_only:
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
else:
self.mod_y = nn.Linear(dim, caption_dim)
# TODO(aryan): attention class does not look compatible
self.attn1 = Attention(...)
# norms go in attention
# self.q_norm_x = RMSNorm(attention_head_dim)
# self.k_norm_x = RMSNorm(attention_head_dim)
# self.q_norm_y = RMSNorm(attention_head_dim)
# self.k_norm_y = RMSNorm(attention_head_dim)
self.norm1_context = LuminaLayerNormContinuous(
embedding_dim=pooled_projection_dim,
conditioning_embedding_dim=dim,
eps=eps,
elementwise_affine=False,
norm_type="rms_norm",
out_dim=None,
)
self.proj_x = nn.Linear(dim, dim)
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
bias=False,
qk_norm=qk_norm,
added_kv_proj_dim=pooled_projection_dim,
added_proj_bias=False,
out_dim=dim,
out_context_dim=pooled_projection_dim,
context_pre_only=context_pre_only,
processor=MochiAttnProcessor2_0(),
eps=eps,
elementwise_affine=True,
)
self.proj_y = nn.Linear(dim, caption_dim) if update_captions else None
def forward(self):
pass
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm2_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm3 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm3_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
self.ff_context = None
if not context_pre_only:
self.ff_context = FeedForward(
pooled_projection_dim, inner_dim=self.ff_context_inner_dim, activation_fn=activation_fn, bias=False
)
self.norm4 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm4_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
breakpoint()
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
if not self.context_pre_only:
norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context(
encoder_hidden_states, temb
)
else:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
attn_hidden_states, context_attn_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + self.norm2(attn_hidden_states) * torch.tanh(gate_msa).unsqueeze(1)
norm_hidden_states = self.norm3(hidden_states) * (1 + scale_mlp.unsqueeze(1))
if not self.context_pre_only:
encoder_hidden_states = encoder_hidden_states + self.norm2_context(
context_attn_hidden_states
) * torch.tanh(enc_gate_msa).unsqueeze(1)
norm_encoder_hidden_states = encoder_hidden_states + self.norm3_context(encoder_hidden_states) * (
1 + enc_scale_mlp.unsqueeze(1)
)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + ff_output * torch.tanh(gate_mlp).unsqueeze(1)
if not self.context_pre_only:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + context_ff_output * torch.tanh(enc_gate_mlp).unsqueeze(0)
return hidden_states, encoder_hidden_states
class MochiRoPE(nn.Module):
def __init__(self, base_height: int = 192, base_width: int = 192, theta: float = 10000.0) -> None:
super().__init__()
self.target_area = base_height * base_width
def _centers(self, start, stop, num, device, dtype) -> torch.Tensor:
edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype)
return (edges[:-1] + edges[1:]) / 2
def _get_positions(
self,
num_frames: int,
height: int,
width: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
scale = (self.target_area / (height * width)) ** 0.5
t = torch.arange(num_frames, device=device, dtype=dtype)
h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype)
w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype)
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3)
return positions
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
freqs = torch.einsum("nd,dhf->nhf", pos, freqs)
freqs_cos = torch.cos(freqs)
freqs_sin = torch.sin(freqs)
return freqs_cos, freqs_sin
def forward(
self,
pos_frequencies: torch.Tensor,
num_frames: int,
height: int,
width: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
pos = self._get_positions(num_frames, height, width, device, dtype)
rope_cos, rope_sin = self._create_rope(pos_frequencies, pos)
return rope_cos, rope_sin
@maybe_allow_in_graph
class MochiTransformer3D(ModelMixin, ConfigMixin):
class MochiTransformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
@@ -77,42 +202,105 @@ class MochiTransformer3D(ModelMixin, ConfigMixin):
num_attention_heads: int = 24,
attention_head_dim: int = 128,
num_layers: int = 48,
caption_dim=1536,
mlp_ratio_x=4.0,
mlp_ratio_y=4.0,
in_channels=12,
qk_norm=True,
qkv_bias=False,
out_bias=True,
timestep_mlp_bias=True,
timestep_scale=1000.0,
text_embed_dim=4096,
max_sequence_length=256,
pooled_projection_dim: int = 1536,
in_channels: int = 12,
out_channels: Optional[int] = None,
qk_norm: str = "rms_norm",
text_embed_dim: int = 4096,
time_embed_dim: int = 256,
activation_fn: str = "swiglu",
max_sequence_length: int = 256,
) -> None:
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
pos_embed_type=None,
)
self.caption_embedder = MochiAttentionPool(num_attention_heads=8, embed_dim=text_embed_dim, output_dim=inner_dim)
self.caption_proj = nn.Linear(text_embed_dim, caption_dim)
self.pos_frequencies = nn.Parameter(
torch.empty(3, num_attention_heads, attention_head_dim // 2)
self.time_embed = MochiCombinedTimestepCaptionEmbedding(
embedding_dim=inner_dim,
pooled_projection_dim=pooled_projection_dim,
text_embed_dim=text_embed_dim,
time_embed_dim=time_embed_dim,
num_attention_heads=8,
)
self.transformer_blocks = nn.ModuleList([
MochiTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
caption_dim=caption_dim,
update_captions=i < num_layers - 1,
self.pos_frequencies = nn.Parameter(torch.empty(3, num_attention_heads, attention_head_dim // 2))
self.rope = MochiRoPE()
self.transformer_blocks = nn.ModuleList(
[
MochiTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
pooled_projection_dim=pooled_projection_dim,
qk_norm=qk_norm,
activation_fn=activation_fn,
context_pre_only=i == num_layers - 1,
)
for i in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(
inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm"
)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_attention_mask: torch.Tensor,
return_dict: bool = True,
) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p = self.config.patch_size
post_patch_height = height // p
post_patch_width = width // p
temb, encoder_hidden_states = self.time_embed(
timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype
)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
hidden_states = self.patch_embed(hidden_states)
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
image_rotary_emb = self.rope(
self.pos_frequencies,
num_frames,
post_patch_height,
post_patch_width,
device=hidden_states.device,
dtype=torch.float32,
)
for i, block in enumerate(self.transformer_blocks):
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
for i in range(num_layers)
])
# TODO(aryan): do something with self.pos_frequencies
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1)
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -2,7 +2,7 @@ import collections
import functools
import itertools
import math
from typing import Any, Callable, Dict, Optional, List
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
@@ -19,8 +19,10 @@ def _ntuple(n):
return parse
to_2tuple = _ntuple(2)
def centers(start: float, stop, num, dtype=None, device=None):
"""linspace through bin centers.
@@ -94,8 +96,7 @@ def compute_mixed_rotation(
num_heads: int
Returns:
freqs_cos: [N, num_heads, num_freqs] - cosine components
freqs_sin: [N, num_heads, num_freqs] - sine components
freqs_cos: [N, num_heads, num_freqs] - cosine components freqs_sin: [N, num_heads, num_freqs] - sine components
"""
with torch.autocast("cuda", enabled=False):
assert freqs.ndim == 3
@@ -132,9 +133,7 @@ class TimestepEmbedder(nn.Module):
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
@@ -220,15 +219,17 @@ class PatchEmbed(nn.Module):
device=device,
)
assert norm_layer is None
self.norm = (
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
)
self.norm = norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
def forward(self, x):
B, _C, T, H, W = x.shape
if not self.dynamic_img_pad:
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
assert (
H % self.patch_size[0] == 0
), f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
assert (
W % self.patch_size[1] == 0
), f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
else:
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
@@ -337,9 +338,7 @@ class AttentionPool(nn.Module):
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0.0
) # (B, H, 1, head_dim)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
@@ -470,9 +469,9 @@ class AsymmetricJointBlock(nn.Module):
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
Returns:
x: (B, N, dim) tensor of visual tokens after block
y: (B, L, dim) tensor of text tokens after block
x: (B, N, dim) tensor of visual tokens after block y: (B, L, dim) tensor of text tokens after block
"""
breakpoint()
N = x.size(1)
c = F.silu(c)
@@ -540,9 +539,7 @@ class AsymmetricAttention(nn.Module):
self.update_y = update_y
self.softmax_scale = softmax_scale
if dim_x % num_heads != 0:
raise ValueError(
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
)
raise ValueError(f"dim_x={dim_x} should be divisible by num_heads={num_heads}")
# Input layers.
self.qkv_bias = qkv_bias
@@ -559,158 +556,292 @@ class AsymmetricAttention(nn.Module):
# Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = nn.Linear(dim_x, dim_x, bias=out_bias, device=device)
self.proj_y = (
nn.Linear(dim_x, dim_y, bias=out_bias, device=device)
if update_y
else nn.Identity()
self.proj_y = nn.Linear(dim_x, dim_y, bias=out_bias, device=device) if update_y else nn.Identity()
def run_qkv_y(self, y):
qkv_y = self.qkv_y(y)
qkv_y = qkv_y.view(qkv_y.size(0), qkv_y.size(1), 3, -1, self.head_dim)
q_y, k_y, v_y = qkv_y.unbind(2)
return q_y, k_y, v_y
# cp_rank, cp_size = cp.get_cp_rank_size()
# local_heads = self.num_heads // cp_size
# if cp.is_cp_active():
# # Only predict local heads.
# assert not self.qkv_bias
# W_qkv_y = self.qkv_y.weight.view(
# 3, self.num_heads, self.head_dim, self.dim_y
# )
# W_qkv_y = W_qkv_y.narrow(1, cp_rank * local_heads, local_heads)
# W_qkv_y = W_qkv_y.reshape(3 * local_heads * self.head_dim, self.dim_y)
# qkv_y = F.linear(y, W_qkv_y, None) # (B, L, 3 * local_h * head_dim)
# else:
# qkv_y = self.qkv_y(y) # (B, L, 3 * dim)
# qkv_y = qkv_y.view(qkv_y.size(0), qkv_y.size(1), 3, local_heads, self.head_dim)
# q_y, k_y, v_y = qkv_y.unbind(2)
# return q_y, k_y, v_y
def prepare_qkv(
self,
x: torch.Tensor, # (B, N, dim_x)
y: torch.Tensor, # (B, L, dim_y)
*,
scale_x: torch.Tensor,
scale_y: torch.Tensor,
rope_cos: torch.Tensor,
rope_sin: torch.Tensor,
valid_token_indices: torch.Tensor = None,
):
breakpoint()
# Pre-norm for visual features
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
# Process visual features
qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
# assert qkv_x.dtype == torch.bfloat16
# qkv_x = cp.all_to_all_collect_tokens(
# qkv_x, self.num_heads
# ) # (3, B, N, local_h, head_dim)
B, M, _ = qkv_x.size()
qkv_x = qkv_x.view(B, M, 3, -1, 128)
qkv_x = qkv_x.permute(2, 0, 1, 3, 4)
# Process text features
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
q_y, k_y, v_y = self.run_qkv_y(y) # (B, L, local_heads, head_dim)
q_y = self.q_norm_y(q_y)
k_y = self.k_norm_y(k_y)
# Split qkv_x into q, k, v
q_x, k_x, v_x = qkv_x.unbind(0) # (B, N, local_h, head_dim)
q_x = self.q_norm_x(q_x)
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
k_x = self.k_norm_x(k_x)
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
# Unite streams
qkv = unify_streams(
q_x,
k_x,
v_x,
q_y,
k_y,
v_y,
valid_token_indices,
)
# def run_qkv_y(self, y):
# cp_rank, cp_size = cp.get_cp_rank_size()
# local_heads = self.num_heads // cp_size
return qkv
# if cp.is_cp_active():
# # Only predict local heads.
# assert not self.qkv_bias
# W_qkv_y = self.qkv_y.weight.view(
# 3, self.num_heads, self.head_dim, self.dim_y
# )
# W_qkv_y = W_qkv_y.narrow(1, cp_rank * local_heads, local_heads)
# W_qkv_y = W_qkv_y.reshape(3 * local_heads * self.head_dim, self.dim_y)
# qkv_y = F.linear(y, W_qkv_y, None) # (B, L, 3 * local_h * head_dim)
# else:
# qkv_y = self.qkv_y(y) # (B, L, 3 * dim)
@torch.compiler.disable()
def run_attention(
self,
qkv: torch.Tensor, # (total <= B * (N + L), 3, local_heads, head_dim)
*,
B: int,
L: int,
M: int,
cu_seqlens: torch.Tensor = None,
max_seqlen_in_batch: int = None,
valid_token_indices: torch.Tensor = None,
):
breakpoint()
N = M
local_heads = self.num_heads
# local_dim = local_heads * self.head_dim
# with torch.autocast("cuda", enabled=False):
# out: torch.Tensor = flash_attn_varlen_qkvpacked_func(
# qkv,
# cu_seqlens=cu_seqlens,
# max_seqlen=max_seqlen_in_batch,
# dropout_p=0.0,
# softmax_scale=self.softmax_scale,
# ) # (total, local_heads, head_dim)
# out = out.view(total, local_dim)
# qkv_y = qkv_y.view(qkv_y.size(0), qkv_y.size(1), 3, local_heads, self.head_dim)
# q_y, k_y, v_y = qkv_y.unbind(2)
# return q_y, k_y, v_y
q, k, v = qkv.unbind(1)
out = F.scaled_dot_product_attention(q, k, v)
# def prepare_qkv(
# self,
# x: torch.Tensor, # (B, N, dim_x)
# y: torch.Tensor, # (B, L, dim_y)
# *,
# scale_x: torch.Tensor,
# scale_y: torch.Tensor,
# rope_cos: torch.Tensor,
# rope_sin: torch.Tensor,
# valid_token_indices: torch.Tensor,
# ):
# # Pre-norm for visual features
# x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
# x, y = pad_and_split_xy(out, valid_token_indices, B, N, L, qkv.dtype)
x, y = out.split_with_sizes((N, L), dim=0)
# assert x.size() == (B, N, local_dim)
# assert y.size() == (B, L, local_dim)
# # Process visual features
# qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
# assert qkv_x.dtype == torch.bfloat16
# qkv_x = cp.all_to_all_collect_tokens(
# qkv_x, self.num_heads
# ) # (3, B, N, local_h, head_dim)
x = x.view(B, -1, local_heads, self.head_dim).flatten(2, 3)
x = self.proj_x(x) # (B, M, dim_x)
# # Process text features
# y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
# q_y, k_y, v_y = self.run_qkv_y(y) # (B, L, local_heads, head_dim)
# q_y = self.q_norm_y(q_y)
# k_y = self.k_norm_y(k_y)
y = y.view(B, -1, local_heads, self.head_dim).flatten(2, 3)
y = self.proj_y(y) # (B, L, dim_y)
return x, y
# # Split qkv_x into q, k, v
# q_x, k_x, v_x = qkv_x.unbind(0) # (B, N, local_h, head_dim)
# q_x = self.q_norm_x(q_x)
# q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
# k_x = self.k_norm_x(k_x)
# k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
def forward(
self,
x: torch.Tensor, # (B, N, dim_x)
y: torch.Tensor, # (B, L, dim_y)
*,
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
packed_indices: Dict[str, torch.Tensor] = None,
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward pass of asymmetric multi-modal attention.
# # Unite streams
# qkv = unify_streams(
# q_x,
# k_x,
# v_x,
# q_y,
# k_y,
# v_y,
# valid_token_indices,
# )
Args:
x: (B, N, dim_x) tensor for visual tokens
y: (B, L, dim_y) tensor of text token features
packed_indices: Dict with keys for Flash Attention
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
# return qkv
Returns:
x: (B, N, dim_x) tensor of visual tokens after multi-modal attention y: (B, L, dim_y) tensor of text token
features after multi-modal attention
"""
B, L, _ = y.shape
_, M, _ = x.shape
# @torch.compiler.disable()
# def run_attention(
# self,
# qkv: torch.Tensor, # (total <= B * (N + L), 3, local_heads, head_dim)
# *,
# B: int,
# L: int,
# M: int,
# cu_seqlens: torch.Tensor,
# max_seqlen_in_batch: int,
# valid_token_indices: torch.Tensor,
# ):
# with torch.autocast("cuda", enabled=False):
# out: torch.Tensor = flash_attn_varlen_qkvpacked_func(
# qkv,
# cu_seqlens=cu_seqlens,
# max_seqlen=max_seqlen_in_batch,
# dropout_p=0.0,
# softmax_scale=self.softmax_scale,
# ) # (total, local_heads, head_dim)
# out = out.view(total, local_dim)
# Predict a packed QKV tensor from visual and text features.
# Don't checkpoint the all_to_all.
qkv = self.prepare_qkv(
x=x,
y=y,
scale_x=scale_x,
scale_y=scale_y,
rope_cos=rope_rotation.get("rope_cos"),
rope_sin=rope_rotation.get("rope_sin"),
# valid_token_indices=packed_indices["valid_token_indices_kv"],
) # (total <= B * (N + L), 3, local_heads, head_dim)
# x, y = pad_and_split_xy(out, valid_token_indices, B, N, L, qkv.dtype)
# assert x.size() == (B, N, local_dim)
# assert y.size() == (B, L, local_dim)
x, y = self.run_attention(
qkv,
B=B,
L=L,
M=M,
# cu_seqlens=packed_indices["cu_seqlens_kv"],
# max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"],
# valid_token_indices=packed_indices["valid_token_indices_kv"],
)
return x, y
# x = x.view(B, N, local_heads, self.head_dim)
# x = self.proj_x(x) # (B, M, dim_x)
# y = self.proj_y(y) # (B, L, dim_y)
# return x, y
def apply_rotary_emb_qk_real(
xqk: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency tensor without complex numbers.
# def forward(
# self,
# x: torch.Tensor, # (B, N, dim_x)
# y: torch.Tensor, # (B, L, dim_y)
# *,
# scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
# scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
# packed_indices: Dict[str, torch.Tensor] = None,
# **rope_rotation,
# ) -> Tuple[torch.Tensor, torch.Tensor]:
# """Forward pass of asymmetric multi-modal attention.
Args:
xqk (torch.Tensor): Query and/or Key tensors to apply rotary embeddings. Shape: (B, S, *, num_heads, D)
Can be either just query or just key, or both stacked along some batch or * dim.
freqs_cos (torch.Tensor): Precomputed cosine frequency tensor.
freqs_sin (torch.Tensor): Precomputed sine frequency tensor.
# Args:
# x: (B, N, dim_x) tensor for visual tokens
# y: (B, L, dim_y) tensor of text token features
# packed_indices: Dict with keys for Flash Attention
# num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
Returns:
torch.Tensor: The input tensor with rotary embeddings applied.
"""
# assert xqk.dtype == torch.bfloat16
# Split the last dimension into even and odd parts
xqk_even = xqk[..., 0::2]
xqk_odd = xqk[..., 1::2]
# Returns:
# x: (B, N, dim_x) tensor of visual tokens after multi-modal attention
# y: (B, L, dim_y) tensor of text token features after multi-modal attention
# """
# B, L, _ = y.shape
# _, M, _ = x.shape
# Apply rotation
cos_part = (xqk_even * freqs_cos - xqk_odd * freqs_sin).type_as(xqk)
sin_part = (xqk_even * freqs_sin + xqk_odd * freqs_cos).type_as(xqk)
# # Predict a packed QKV tensor from visual and text features.
# # Don't checkpoint the all_to_all.
# qkv = self.prepare_qkv(
# x=x,
# y=y,
# scale_x=scale_x,
# scale_y=scale_y,
# rope_cos=rope_rotation.get("rope_cos"),
# rope_sin=rope_rotation.get("rope_sin"),
# valid_token_indices=packed_indices["valid_token_indices_kv"],
# ) # (total <= B * (N + L), 3, local_heads, head_dim)
# Interleave the results back into the original shape
out = torch.stack([cos_part, sin_part], dim=-1).flatten(-2)
# assert out.dtype == torch.bfloat16
return out
# x, y = self.run_attention(
# qkv,
# B=B,
# L=L,
# M=M,
# cu_seqlens=packed_indices["cu_seqlens_kv"],
# max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"],
# valid_token_indices=packed_indices["valid_token_indices_kv"],
# )
# return x, y
class PadSplitXY(torch.autograd.Function):
"""
Merge heads, pad and extract visual and text tokens, and split along the sequence length.
"""
@staticmethod
def forward(
ctx,
xy: torch.Tensor,
indices: torch.Tensor,
B: int,
N: int,
L: int,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
xy: Packed tokens. Shape: (total <= B * (N + L), num_heads * head_dim).
indices: Valid token indices out of unpacked tensor. Shape: (total,)
Returns:
x: Visual tokens. Shape: (B, N, num_heads * head_dim). y: Text tokens. Shape: (B, L, num_heads * head_dim).
"""
ctx.save_for_backward(indices)
ctx.B, ctx.N, ctx.L = B, N, L
D = xy.size(1)
# Pad sequences to (B, N + L, dim).
assert indices.ndim == 1
output = torch.zeros(B * (N + L), D, device=xy.device, dtype=dtype)
indices = indices.unsqueeze(1).expand(-1, D) # (total,) -> (total, num_heads * head_dim)
output.scatter_(0, indices, xy)
xy = output.view(B, N + L, D)
# Split visual and text tokens along the sequence length.
return torch.tensor_split(xy, (N,), dim=1)
def pad_and_split_xy(xy, indices, B, N, L, dtype) -> Tuple[torch.Tensor, torch.Tensor]:
return PadSplitXY.apply(xy, indices, B, N, L, dtype)
class UnifyStreams(torch.autograd.Function):
"""Unify visual and text streams."""
@staticmethod
def forward(
ctx,
q_x: torch.Tensor,
k_x: torch.Tensor,
v_x: torch.Tensor,
q_y: torch.Tensor,
k_y: torch.Tensor,
v_y: torch.Tensor,
indices: torch.Tensor,
):
"""
Args:
q_x: (B, N, num_heads, head_dim)
k_x: (B, N, num_heads, head_dim)
v_x: (B, N, num_heads, head_dim)
q_y: (B, L, num_heads, head_dim)
k_y: (B, L, num_heads, head_dim)
v_y: (B, L, num_heads, head_dim)
indices: (total <= B * (N + L))
Returns:
qkv: (total <= B * (N + L), 3, num_heads, head_dim)
"""
ctx.save_for_backward(indices)
B, N, num_heads, head_dim = q_x.size()
ctx.B, ctx.N, ctx.L = B, N, q_y.size(1)
D = num_heads * head_dim
q = torch.cat([q_x, q_y], dim=1)
k = torch.cat([k_x, k_y], dim=1)
v = torch.cat([v_x, v_y], dim=1)
qkv = torch.stack([q, k, v], dim=2).view(B * (N + ctx.L), 3, D)
# indices = indices[:, None, None].expand(-1, 3, D)
# qkv = torch.gather(qkv, 0, indices) # (total, 3, num_heads * head_dim)
return qkv.unflatten(2, (num_heads, head_dim))
def unify_streams(q_x, k_x, v_x, q_y, k_y, v_y, indices) -> torch.Tensor:
return UnifyStreams.apply(q_x, k_x, v_x, q_y, k_y, v_y, indices)
class FinalLayer(nn.Module):
@@ -726,13 +857,9 @@ class FinalLayer(nn.Module):
device: Optional[torch.device] = None,
):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, device=device
)
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, device=device)
self.mod = nn.Linear(hidden_size, 2 * hidden_size, device=device)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, device=device
)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, device=device)
def forward(self, x, c):
c = F.silu(c)
@@ -777,15 +904,11 @@ class MochiTransformer3DModel(nn.Module):
self.num_heads = num_heads
self.hidden_size_x = hidden_size_x
self.hidden_size_y = hidden_size_y
self.head_dim = (
hidden_size_x // num_heads
) # Head dimension and count is determined by visual.
self.head_dim = hidden_size_x // num_heads # Head dimension and count is determined by visual.
self.use_extended_posenc = use_extended_posenc
self.t5_token_length = t5_token_length
self.t5_feat_dim = t5_feat_dim
self.rope_theta = (
rope_theta # Scaling factor for frequency computation for temporal RoPE.
)
self.rope_theta = rope_theta # Scaling factor for frequency computation for temporal RoPE.
self.x_embedder = PatchEmbed(
patch_size=patch_size,
@@ -796,24 +919,16 @@ class MochiTransformer3DModel(nn.Module):
)
# Conditionings
# Timestep
self.t_embedder = TimestepEmbedder(
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale
)
self.t_embedder = TimestepEmbedder(hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale)
# Caption Pooling (T5)
self.t5_y_embedder = AttentionPool(
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device
)
self.t5_y_embedder = AttentionPool(t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device)
# Dense Embedding Projection (T5)
self.t5_yproj = nn.Linear(
t5_feat_dim, hidden_size_y, bias=True, device=device
)
self.t5_yproj = nn.Linear(t5_feat_dim, hidden_size_y, bias=True, device=device)
# Initialize pos_frequencies as an empty parameter.
self.pos_frequencies = nn.Parameter(
torch.empty(3, self.num_heads, self.head_dim // 2, device=device)
)
self.pos_frequencies = nn.Parameter(torch.empty(3, self.num_heads, self.head_dim // 2, device=device))
# for depth 48:
# b = 0: AsymmetricJointBlock, update_y=True
@@ -839,9 +954,7 @@ class MochiTransformer3DModel(nn.Module):
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
self.final_layer = FinalLayer(
hidden_size_x, patch_size, self.out_channels, device=device
)
self.final_layer = FinalLayer(hidden_size_x, patch_size, self.out_channels, device=device)
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
"""
@@ -861,6 +974,7 @@ class MochiTransformer3DModel(nn.Module):
t5_mask: torch.Tensor,
):
"""Prepare input and conditioning embeddings."""
breakpoint()
with torch.profiler.record_function("x_emb_pe"):
# Visual patch embeddings with positional encoding.
@@ -878,9 +992,7 @@ class MochiTransformer3DModel(nn.Module):
pH, pW = H // self.patch_size, W // self.patch_size
N = T * pH * pW
assert x.size(1) == N
pos = create_position_matrix(
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
) # (N, 3)
pos = create_position_matrix(T, pH=pH, pW=pW, device=x.device, dtype=torch.float32) # (N, 3)
rope_cos, rope_sin = compute_mixed_rotation(
freqs=self.pos_frequencies, pos=pos
) # Each are (N, num_heads, dim // 2)
@@ -896,9 +1008,7 @@ class MochiTransformer3DModel(nn.Module):
t5_feat.size(1) == self.t5_token_length
), f"Expected L={self.t5_token_length}, got {t5_feat.shape} for y_feat."
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
assert (
t5_y_pool.size(0) == B
), f"Expected B={B}, got {t5_y_pool.shape} for t5_y_pool."
assert t5_y_pool.size(0) == B, f"Expected B={B}, got {t5_y_pool.shape} for t5_y_pool."
c = c_t + t5_y_pool
@@ -921,16 +1031,17 @@ class MochiTransformer3DModel(nn.Module):
Args:
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
sigma: (B,) tensor of noise standard deviations
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
y_feat:
List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77,
y_feat_dim=2048)
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
"""
B, _, T, H, W = x.shape
x, c, y_feat, rope_cos, rope_sin = self.prepare(
x, sigma, y_feat[0], y_mask[0]
)
x, c, y_feat, rope_cos, rope_sin = self.prepare(x, sigma, y_feat[0], y_mask[0])
del y_mask
breakpoint()
for i, block in enumerate(self.blocks):
x, y_feat = block(

View File

@@ -347,6 +347,21 @@ class LuminaNextDiT2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class MochiTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class ModelMixin(metaclass=DummyObject):
_backends = ["torch"]