1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

GLIDE + DDIM without artifacts

This commit is contained in:
anton-l
2022-06-13 14:33:48 +02:00
parent 2f8e556b46
commit bff9746da0
2 changed files with 18 additions and 26 deletions

View File

@@ -859,9 +859,6 @@ class GLIDE(DiffusionPipeline):
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(image.shape) - 1))) # no noise when t == 0
image = mean + nonzero_mask * torch.exp(0.5 * log_variance) * noise
image = image[:1].permute(0, 2, 3, 1)
return image
# 4. Run the upscaling step
batch_size = 1
image = image[:1]
@@ -879,20 +876,10 @@ class GLIDE(DiffusionPipeline):
)
image = image.to(torch_device) * upsample_temp
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_image_direction -> "direction pointingc to x_t"
# - pred_prev_image -> "x_t-1"
num_trained_timesteps = self.upscale_noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps_upscale)
self.upscale_noise_scheduler.rescale_betas(num_inference_steps_upscale)
# adapt the beta schedule to the number of steps
# self.upscale_noise_scheduler.rescale_betas(num_inference_steps_upscale)
for t in tqdm.tqdm(reversed(range(num_inference_steps_upscale)), total=num_inference_steps_upscale):
# 1. predict noise residual
@@ -903,7 +890,7 @@ class GLIDE(DiffusionPipeline):
# 2. predict previous mean of image x_t-1
pred_prev_image = self.upscale_noise_scheduler.step(
noise_residual, image, t, num_inference_steps_upscale, eta
noise_residual, image, t, num_inference_steps_upscale, eta, use_clipped_residual=True
)
# 3. optionally sample variance
@@ -917,6 +904,6 @@ class GLIDE(DiffusionPipeline):
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
image = image.permute(0, 2, 3, 1)
image = image.clamp(-1, 1).permute(0, 2, 3, 1)
return image

View File

@@ -69,14 +69,15 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
#
# self.register_buffer("log_variance", log_variance.to(torch.float32))
def rescale_betas(self, num_timesteps):
if self.beta_schedule == "linear":
scale = self.timesteps / num_timesteps
self.betas = linear_beta_schedule(
num_timesteps, beta_start=self.beta_start * scale, beta_end=self.beta_end * scale
)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
# def rescale_betas(self, num_timesteps):
# # GLIDE scaling
# if self.beta_schedule == "linear":
# scale = self.timesteps / num_timesteps
# self.betas = linear_beta_schedule(
# num_timesteps, beta_start=self.beta_start * scale, beta_end=self.beta_end * scale
# )
# self.alphas = 1.0 - self.betas
# self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
def get_alpha(self, time_step):
return self.alphas[time_step]
@@ -107,7 +108,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
return variance
def step(self, residual, image, t, num_inference_steps, eta):
def step(self, residual, image, t, num_inference_steps, eta, use_clipped_residual=False):
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
@@ -141,6 +142,10 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
variance = self.get_variance(t, num_inference_steps)
std_dev_t = eta * variance ** (0.5)
if use_clipped_residual:
# the residual is always re-derived from the clipped x_0 in GLIDE
residual = (image - alpha_prod_t ** (0.5) * pred_original_image) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual