1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

add doc around fusing multiple loras. (#5056)

* add doc around fusing multiple loras.

* Apply suggestions from code review

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* address poli's comments.

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
This commit is contained in:
Sayak Paul
2023-09-18 12:42:58 +01:00
committed by GitHub
parent 6886e28fd8
commit bfc606301f

View File

@@ -378,6 +378,56 @@ images_fusion = pipe(
).images
```
## Working with multiple LoRA checkpoints
With the `fuse_lora()` method as described above, it's possible to load multiple LoRA checkpoints. Let's work through a complete example. First we load the base pipeline:
```python
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
)
pipe.to("cuda")
```
Then let's two LoRA checkpoints and fuse them with specific `lora_scale` values:
```python
# LoRA one.
pipe.load_lora_weights("goofyai/cyborg_style_xl")
pipe.fuse_lora(lora_scale=0.7)
# LoRA two.
pipe.load_lora_weights("TheLastBen/Pikachu_SDXL")
pipe.fuse_lora(lora_scale=0.7)
```
<Tip>
Play with the `lora_scale` parameter when working with multiple LoRAs to control the amount of their influence on the final outputs.
</Tip>
Let's see them in action:
```python
prompt = "cyborg style pikachu"
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
```
![cyborg_pikachu](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/cyborg_pikachu.png)
<Tip warning={true}>
Currently, unfusing multiple LoRA checkpoints is not possible.
</Tip>
## Supporting different LoRA checkpoints from Diffusers
🤗 Diffusers supports loading checkpoints from popular LoRA trainers such as [Kohya](https://github.com/kohya-ss/sd-scripts/) and [TheLastBen](https://github.com/TheLastBen/fast-stable-diffusion). In this section, we outline the current API's details and limitations.