mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
fix StableDiffusionTensorRT super args error (#6009)
This commit is contained in:
@@ -41,7 +41,7 @@ from polygraphy.backend.trt import (
|
||||
save_engine,
|
||||
)
|
||||
from polygraphy.backend.trt import util as trt_util
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
||||
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion import (
|
||||
@@ -709,6 +709,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
||||
scheduler: DDIMScheduler,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
image_encoder: CLIPVisionModelWithProjection = None,
|
||||
requires_safety_checker: bool = True,
|
||||
stages=["clip", "unet", "vae", "vae_encoder"],
|
||||
image_height: int = 512,
|
||||
@@ -724,7 +725,15 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
||||
timing_cache: str = "timing_cache",
|
||||
):
|
||||
super().__init__(
|
||||
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
|
||||
vae,
|
||||
text_encoder,
|
||||
tokenizer,
|
||||
unet,
|
||||
scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
image_encoder=image_encoder,
|
||||
requires_safety_checker=requires_safety_checker,
|
||||
)
|
||||
|
||||
self.vae.forward = self.vae.decode
|
||||
|
||||
@@ -41,7 +41,7 @@ from polygraphy.backend.trt import (
|
||||
save_engine,
|
||||
)
|
||||
from polygraphy.backend.trt import util as trt_util
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
||||
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion import (
|
||||
@@ -710,6 +710,7 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
||||
scheduler: DDIMScheduler,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
image_encoder: CLIPVisionModelWithProjection = None,
|
||||
requires_safety_checker: bool = True,
|
||||
stages=["clip", "unet", "vae", "vae_encoder"],
|
||||
image_height: int = 512,
|
||||
@@ -725,7 +726,15 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
||||
timing_cache: str = "timing_cache",
|
||||
):
|
||||
super().__init__(
|
||||
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
|
||||
vae,
|
||||
text_encoder,
|
||||
tokenizer,
|
||||
unet,
|
||||
scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
image_encoder=image_encoder,
|
||||
requires_safety_checker=requires_safety_checker,
|
||||
)
|
||||
|
||||
self.vae.forward = self.vae.decode
|
||||
|
||||
@@ -40,7 +40,7 @@ from polygraphy.backend.trt import (
|
||||
save_engine,
|
||||
)
|
||||
from polygraphy.backend.trt import util as trt_util
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
||||
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion import (
|
||||
@@ -624,6 +624,7 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
scheduler: DDIMScheduler,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
image_encoder: CLIPVisionModelWithProjection = None,
|
||||
requires_safety_checker: bool = True,
|
||||
stages=["clip", "unet", "vae"],
|
||||
image_height: int = 768,
|
||||
@@ -639,7 +640,15 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
timing_cache: str = "timing_cache",
|
||||
):
|
||||
super().__init__(
|
||||
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
|
||||
vae,
|
||||
text_encoder,
|
||||
tokenizer,
|
||||
unet,
|
||||
scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
image_encoder=image_encoder,
|
||||
requires_safety_checker=requires_safety_checker,
|
||||
)
|
||||
|
||||
self.vae.forward = self.vae.decode
|
||||
|
||||
Reference in New Issue
Block a user