mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Fix truthy-ness condition in pipelines that use denoising_start (#6912)
* fix denoising start * fix tests * remove debug
This commit is contained in:
@@ -1766,7 +1766,7 @@ class SDXLLongPromptWeightingPipeline(
|
||||
|
||||
# 4. Prepare timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
if image is not None:
|
||||
@@ -1774,7 +1774,7 @@ class SDXLLongPromptWeightingPipeline(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=self.denoising_start if denoising_value_valid else None,
|
||||
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
||||
)
|
||||
|
||||
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||||
|
||||
@@ -1769,7 +1769,7 @@ class StyleAlignedSDXLPipeline(
|
||||
|
||||
# 4. Prepare timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
|
||||
@@ -1778,7 +1778,7 @@ class StyleAlignedSDXLPipeline(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=self.denoising_start if denoising_value_valid else None,
|
||||
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
||||
)
|
||||
|
||||
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||||
|
||||
@@ -1563,14 +1563,14 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(DiffusionPipeline, FromS
|
||||
|
||||
# 4. set timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=denoising_start if denoising_value_valid else None,
|
||||
denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
|
||||
)
|
||||
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||||
if num_inference_steps < 1:
|
||||
|
||||
@@ -1477,11 +1477,14 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
||||
|
||||
# 4. set timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
|
||||
)
|
||||
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||||
if num_inference_steps < 1:
|
||||
|
||||
@@ -1315,14 +1315,14 @@ class StableDiffusionXLImg2ImgPipeline(
|
||||
|
||||
# 5. Prepare timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=self.denoising_start if denoising_value_valid else None,
|
||||
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
||||
)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
|
||||
@@ -1581,14 +1581,14 @@ class StableDiffusionXLInpaintPipeline(
|
||||
|
||||
# 4. set timesteps
|
||||
def denoising_value_valid(dnv):
|
||||
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
||||
return isinstance(dnv, float) and 0 < dnv < 1
|
||||
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device,
|
||||
denoising_start=self.denoising_start if denoising_value_valid else None,
|
||||
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
||||
)
|
||||
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||||
if num_inference_steps < 1:
|
||||
|
||||
Reference in New Issue
Block a user