1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Fix truthy-ness condition in pipelines that use denoising_start (#6912)

* fix denoising start

* fix tests

* remove debug
This commit is contained in:
Aryan
2024-02-25 15:09:22 +05:30
committed by GitHub
parent 738c986957
commit bbf70c8739
6 changed files with 15 additions and 12 deletions

View File

@@ -1766,7 +1766,7 @@ class SDXLLongPromptWeightingPipeline(
# 4. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
if image is not None:
@@ -1774,7 +1774,7 @@ class SDXLLongPromptWeightingPipeline(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense

View File

@@ -1769,7 +1769,7 @@ class StyleAlignedSDXLPipeline(
# 4. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
@@ -1778,7 +1778,7 @@ class StyleAlignedSDXLPipeline(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense

View File

@@ -1563,14 +1563,14 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(DiffusionPipeline, FromS
# 4. set timesteps
def denoising_value_valid(dnv):
return isinstance(denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=denoising_start if denoising_value_valid else None,
denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:

View File

@@ -1477,11 +1477,14 @@ class StableDiffusionXLControlNetInpaintPipeline(
# 4. set timesteps
def denoising_value_valid(dnv):
return isinstance(denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None
num_inference_steps,
strength,
device,
denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:

View File

@@ -1315,14 +1315,14 @@ class StableDiffusionXLImg2ImgPipeline(
# 5. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)

View File

@@ -1581,14 +1581,14 @@ class StableDiffusionXLInpaintPipeline(
# 4. set timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
return isinstance(dnv, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1: