mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Community] CLIP Guided Images Mixing with Stable DIffusion Pipeline (#3587)
* added clip_guided_images_mixing_stable_diffusion file and readme description * apply pre-commit --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
@@ -36,6 +36,7 @@ If a community doesn't work as expected, please open an issue and ping the autho
|
||||
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.0986) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint ) | - | [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
|
||||
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|
||||
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
|
||||
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
|
||||
|
||||
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
||||
```py
|
||||
@@ -1515,6 +1516,89 @@ latency = elapsed_time(pipe4)
|
||||
print("Latency of StableDiffusionPipeline--fp32",latency)
|
||||
|
||||
```
|
||||
|
||||
### CLIP Guided Images Mixing With Stable Diffusion
|
||||
|
||||

|
||||
|
||||
CLIP guided stable diffusion images mixing pipline allows to combine two images using standard diffusion models.
|
||||
This approach is using (optional) CoCa model to avoid writing image description.
|
||||
[More code examples](https://github.com/TheDenk/images_mixing)
|
||||
|
||||
## Example Images Mixing (with CoCa)
|
||||
```python
|
||||
import requests
|
||||
from io import BytesIO
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
import open_clip
|
||||
from open_clip import SimpleTokenizer
|
||||
from diffusers import DiffusionPipeline
|
||||
from transformers import CLIPFeatureExtractor, CLIPModel
|
||||
|
||||
|
||||
def download_image(url):
|
||||
response = requests.get(url)
|
||||
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
||||
|
||||
# Loading additional models
|
||||
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
||||
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
||||
)
|
||||
clip_model = CLIPModel.from_pretrained(
|
||||
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
|
||||
)
|
||||
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
|
||||
coca_model.dtype = torch.float16
|
||||
coca_transform = open_clip.image_transform(
|
||||
coca_model.visual.image_size,
|
||||
is_train = False,
|
||||
mean = getattr(coca_model.visual, 'image_mean', None),
|
||||
std = getattr(coca_model.visual, 'image_std', None),
|
||||
)
|
||||
coca_tokenizer = SimpleTokenizer()
|
||||
|
||||
# Pipline creating
|
||||
mixing_pipeline = DiffusionPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
custom_pipeline="clip_guided_images_mixing_stable_diffusion",
|
||||
clip_model=clip_model,
|
||||
feature_extractor=feature_extractor,
|
||||
coca_model=coca_model,
|
||||
coca_tokenizer=coca_tokenizer,
|
||||
coca_transform=coca_transform,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
mixing_pipeline.enable_attention_slicing()
|
||||
mixing_pipeline = mixing_pipeline.to("cuda")
|
||||
|
||||
# Pipline running
|
||||
generator = torch.Generator(device="cuda").manual_seed(17)
|
||||
|
||||
def download_image(url):
|
||||
response = requests.get(url)
|
||||
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
||||
|
||||
content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
|
||||
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")
|
||||
|
||||
pipe_images = mixing_pipeline(
|
||||
num_inference_steps=50,
|
||||
content_image=content_image,
|
||||
style_image=style_image,
|
||||
noise_strength=0.65,
|
||||
slerp_latent_style_strength=0.9,
|
||||
slerp_prompt_style_strength=0.1,
|
||||
slerp_clip_image_style_strength=0.1,
|
||||
guidance_scale=9.0,
|
||||
batch_size=1,
|
||||
clip_guidance_scale=100,
|
||||
generator=generator,
|
||||
).images
|
||||
```
|
||||
|
||||

|
||||
|
||||
### Stable Diffusion Mixture
|
||||
|
||||
|
||||
512
examples/community/clip_guided_images_mixing_stable_diffusion.py
Normal file
512
examples/community/clip_guided_images_mixing_stable_diffusion.py
Normal file
@@ -0,0 +1,512 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import inspect
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torchvision import transforms
|
||||
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
DiffusionPipeline,
|
||||
DPMSolverMultistepScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.utils import (
|
||||
PIL_INTERPOLATION,
|
||||
randn_tensor,
|
||||
)
|
||||
|
||||
|
||||
def preprocess(image, w, h):
|
||||
if isinstance(image, torch.Tensor):
|
||||
return image
|
||||
elif isinstance(image, PIL.Image.Image):
|
||||
image = [image]
|
||||
|
||||
if isinstance(image[0], PIL.Image.Image):
|
||||
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[
|
||||
None, :] for i in image]
|
||||
image = np.concatenate(image, axis=0)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image.transpose(0, 3, 1, 2)
|
||||
image = 2.0 * image - 1.0
|
||||
image = torch.from_numpy(image)
|
||||
elif isinstance(image[0], torch.Tensor):
|
||||
image = torch.cat(image, dim=0)
|
||||
return image
|
||||
|
||||
|
||||
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
input_device = v0.device
|
||||
v0 = v0.cpu().numpy()
|
||||
v1 = v1.cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2 = torch.from_numpy(v2).to(input_device)
|
||||
|
||||
return v2
|
||||
|
||||
|
||||
def spherical_dist_loss(x, y):
|
||||
x = F.normalize(x, dim=-1)
|
||||
y = F.normalize(y, dim=-1)
|
||||
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
||||
|
||||
|
||||
def set_requires_grad(model, value):
|
||||
for param in model.parameters():
|
||||
param.requires_grad = value
|
||||
|
||||
|
||||
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
clip_model: CLIPModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
coca_model=None,
|
||||
coca_tokenizer=None,
|
||||
coca_transform=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
clip_model=clip_model,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
feature_extractor=feature_extractor,
|
||||
coca_model=coca_model,
|
||||
coca_tokenizer=coca_tokenizer,
|
||||
coca_transform=coca_transform,
|
||||
)
|
||||
self.feature_extractor_size = (
|
||||
feature_extractor.size
|
||||
if isinstance(feature_extractor.size, int)
|
||||
else feature_extractor.size['shortest_edge']
|
||||
)
|
||||
self.normalize = transforms.Normalize(
|
||||
mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
||||
set_requires_grad(self.text_encoder, False)
|
||||
set_requires_grad(self.clip_model, False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = 'auto'):
|
||||
if slice_size == 'auto':
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
|
||||
def disable_attention_slicing(self):
|
||||
self.enable_attention_slicing(None)
|
||||
|
||||
def freeze_vae(self):
|
||||
set_requires_grad(self.vae, False)
|
||||
|
||||
def unfreeze_vae(self):
|
||||
set_requires_grad(self.vae, True)
|
||||
|
||||
def freeze_unet(self):
|
||||
set_requires_grad(self.unet, False)
|
||||
|
||||
def unfreeze_unet(self):
|
||||
set_requires_grad(self.unet, True)
|
||||
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(
|
||||
int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
|
||||
if not isinstance(image, torch.Tensor):
|
||||
raise ValueError(
|
||||
f'`image` has to be of type `torch.Tensor` but is {type(image)}'
|
||||
)
|
||||
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
|
||||
if isinstance(generator, list):
|
||||
init_latents = [
|
||||
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
||||
]
|
||||
init_latents = torch.cat(init_latents, dim=0)
|
||||
else:
|
||||
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
||||
|
||||
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
||||
init_latents = 0.18215 * init_latents
|
||||
init_latents = init_latents.repeat_interleave(batch_size, dim=0)
|
||||
|
||||
noise = randn_tensor(init_latents.shape,
|
||||
generator=generator, device=device, dtype=dtype)
|
||||
|
||||
# get latents
|
||||
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
||||
latents = init_latents
|
||||
|
||||
return latents
|
||||
|
||||
def get_image_description(self, image):
|
||||
transformed_image = self.coca_transform(image).unsqueeze(0)
|
||||
with torch.no_grad(), torch.cuda.amp.autocast():
|
||||
generated = self.coca_model.generate(transformed_image.to(
|
||||
device=self.device, dtype=self.coca_model.dtype))
|
||||
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
|
||||
return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,')
|
||||
|
||||
def get_clip_image_embeddings(self, image, batch_size):
|
||||
clip_image_input = self.feature_extractor.preprocess(image)
|
||||
clip_image_features = torch.from_numpy(
|
||||
clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half()
|
||||
image_embeddings_clip = self.clip_model.get_image_features(
|
||||
clip_image_features)
|
||||
image_embeddings_clip = image_embeddings_clip / \
|
||||
image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
||||
image_embeddings_clip = image_embeddings_clip.repeat_interleave(
|
||||
batch_size, dim=0)
|
||||
return image_embeddings_clip
|
||||
|
||||
@torch.enable_grad()
|
||||
def cond_fn(
|
||||
self,
|
||||
latents,
|
||||
timestep,
|
||||
index,
|
||||
text_embeddings,
|
||||
noise_pred_original,
|
||||
original_image_embeddings_clip,
|
||||
clip_guidance_scale,
|
||||
):
|
||||
latents = latents.detach().requires_grad_()
|
||||
|
||||
latent_model_input = self.scheduler.scale_model_input(
|
||||
latents, timestep)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, timestep,
|
||||
encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
|
||||
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
# compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_original_sample = (
|
||||
latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
||||
|
||||
fac = torch.sqrt(beta_prod_t)
|
||||
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
||||
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[index]
|
||||
sample = latents - sigma * noise_pred
|
||||
else:
|
||||
raise ValueError(
|
||||
f'scheduler type {type(self.scheduler)} not supported')
|
||||
|
||||
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
||||
sample = 1 / 0.18215 * sample
|
||||
image = self.vae.decode(sample).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
|
||||
image = transforms.Resize(self.feature_extractor_size)(image)
|
||||
image = self.normalize(image).to(latents.dtype)
|
||||
|
||||
image_embeddings_clip = self.clip_model.get_image_features(image)
|
||||
image_embeddings_clip = image_embeddings_clip / \
|
||||
image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
||||
|
||||
loss = spherical_dist_loss(
|
||||
image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale
|
||||
|
||||
grads = -torch.autograd.grad(loss, latents)[0]
|
||||
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
latents = latents.detach() + grads * (sigma**2)
|
||||
noise_pred = noise_pred_original
|
||||
else:
|
||||
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
||||
return noise_pred, latents
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
style_image: Union[torch.FloatTensor, PIL.Image.Image],
|
||||
content_image: Union[torch.FloatTensor, PIL.Image.Image],
|
||||
style_prompt: Optional[str] = None,
|
||||
content_prompt: Optional[str] = None,
|
||||
height: Optional[int] = 512,
|
||||
width: Optional[int] = 512,
|
||||
noise_strength: float = 0.6,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
batch_size: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
clip_guidance_scale: Optional[float] = 100,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
output_type: Optional[str] = 'pil',
|
||||
return_dict: bool = True,
|
||||
slerp_latent_style_strength: float = 0.8,
|
||||
slerp_prompt_style_strength: float = 0.1,
|
||||
slerp_clip_image_style_strength: float = 0.1,
|
||||
):
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f'You have passed {batch_size} batch_size, but only {len(generator)} generators.')
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(
|
||||
f'`height` and `width` have to be divisible by 8 but are {height} and {width}.')
|
||||
|
||||
if isinstance(generator, torch.Generator) and batch_size > 1:
|
||||
generator = [generator] + [None] * (batch_size - 1)
|
||||
|
||||
coca_is_none = [
|
||||
('model', self.coca_model is None),
|
||||
('tokenizer', self.coca_tokenizer is None),
|
||||
('transform', self.coca_transform is None)
|
||||
]
|
||||
coca_is_none = [x[0] for x in coca_is_none if x[1]]
|
||||
coca_is_none_str = ', '.join(coca_is_none)
|
||||
# generate prompts with coca model if prompt is None
|
||||
if content_prompt is None:
|
||||
if len(coca_is_none):
|
||||
raise ValueError(
|
||||
f'Content prompt is None and CoCa [{coca_is_none_str}] is None.'
|
||||
f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.'
|
||||
)
|
||||
content_prompt = self.get_image_description(content_image)
|
||||
if style_prompt is None:
|
||||
if len(coca_is_none):
|
||||
raise ValueError(
|
||||
f'Style prompt is None and CoCa [{coca_is_none_str}] is None.'
|
||||
f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.'
|
||||
)
|
||||
style_prompt = self.get_image_description(style_image)
|
||||
|
||||
# get prompt text embeddings for content and style
|
||||
content_text_input = self.tokenizer(
|
||||
content_prompt,
|
||||
padding='max_length',
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors='pt',
|
||||
)
|
||||
content_text_embeddings = self.text_encoder(
|
||||
content_text_input.input_ids.to(self.device))[0]
|
||||
|
||||
style_text_input = self.tokenizer(
|
||||
style_prompt,
|
||||
padding='max_length',
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors='pt',
|
||||
)
|
||||
style_text_embeddings = self.text_encoder(
|
||||
style_text_input.input_ids.to(self.device))[0]
|
||||
|
||||
text_embeddings = slerp(
|
||||
slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt
|
||||
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)
|
||||
|
||||
# set timesteps
|
||||
accepts_offset = 'offset' in set(inspect.signature(
|
||||
self.scheduler.set_timesteps).parameters.keys())
|
||||
extra_set_kwargs = {}
|
||||
if accepts_offset:
|
||||
extra_set_kwargs['offset'] = 1
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
||||
# Some schedulers like PNDM have timesteps as arrays
|
||||
# It's more optimized to move all timesteps to correct device beforehand
|
||||
self.scheduler.timesteps.to(self.device)
|
||||
|
||||
timesteps, num_inference_steps = self.get_timesteps(
|
||||
num_inference_steps, noise_strength, self.device)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size)
|
||||
|
||||
# Preprocess image
|
||||
preprocessed_content_image = preprocess(content_image, width, height)
|
||||
content_latents = self.prepare_latents(
|
||||
preprocessed_content_image,
|
||||
latent_timestep,
|
||||
batch_size,
|
||||
text_embeddings.dtype,
|
||||
self.device,
|
||||
generator
|
||||
)
|
||||
|
||||
preprocessed_style_image = preprocess(style_image, width, height)
|
||||
style_latents = self.prepare_latents(
|
||||
preprocessed_style_image,
|
||||
latent_timestep,
|
||||
batch_size,
|
||||
text_embeddings.dtype,
|
||||
self.device,
|
||||
generator
|
||||
)
|
||||
|
||||
latents = slerp(slerp_latent_style_strength,
|
||||
content_latents, style_latents)
|
||||
|
||||
if clip_guidance_scale > 0:
|
||||
content_clip_image_embedding = self.get_clip_image_embeddings(
|
||||
content_image, batch_size)
|
||||
style_clip_image_embedding = self.get_clip_image_embeddings(
|
||||
style_image, batch_size)
|
||||
clip_image_embeddings = slerp(
|
||||
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
max_length = content_text_input.input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer(
|
||||
[''], padding='max_length', max_length=max_length, return_tensors='pt')
|
||||
uncond_embeddings = self.text_encoder(
|
||||
uncond_input.input_ids.to(self.device))[0]
|
||||
# duplicate unconditional embeddings for each generation per prompt
|
||||
uncond_embeddings = uncond_embeddings.repeat_interleave(
|
||||
batch_size, dim=0)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
# get the initial random noise unless the user supplied it
|
||||
|
||||
# Unlike in other pipelines, latents need to be generated in the target device
|
||||
# for 1-to-1 results reproducibility with the CompVis implementation.
|
||||
# However this currently doesn't work in `mps`.
|
||||
latents_shape = (
|
||||
batch_size, self.unet.config.in_channels, height // 8, width // 8)
|
||||
latents_dtype = text_embeddings.dtype
|
||||
if latents is None:
|
||||
if self.device.type == 'mps':
|
||||
# randn does not work reproducibly on mps
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device='cpu',
|
||||
dtype=latents_dtype
|
||||
).to(self.device)
|
||||
else:
|
||||
latents = torch.randn(
|
||||
latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(
|
||||
f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}')
|
||||
latents = latents.to(self.device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = 'eta' in set(inspect.signature(
|
||||
self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs['eta'] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = 'generator' in set(
|
||||
inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs['generator'] = generator
|
||||
|
||||
with self.progress_bar(total=num_inference_steps):
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat(
|
||||
[latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(
|
||||
latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
# perform classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * \
|
||||
(noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# perform clip guidance
|
||||
if clip_guidance_scale > 0:
|
||||
text_embeddings_for_guidance = (
|
||||
text_embeddings.chunk(
|
||||
2)[1] if do_classifier_free_guidance else text_embeddings
|
||||
)
|
||||
noise_pred, latents = self.cond_fn(
|
||||
latents,
|
||||
t,
|
||||
i,
|
||||
text_embeddings_for_guidance,
|
||||
noise_pred,
|
||||
clip_image_embeddings,
|
||||
clip_guidance_scale,
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(
|
||||
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
|
||||
if output_type == 'pil':
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, None)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
||||
Reference in New Issue
Block a user